Previous |  Up |  Next

Article

Title: Commutators of Marcinkiewicz integrals on Herz spaces with variable exponent (English)
Author: Wang, Hongbin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 251-269
Summary lang: English
.
Category: math
.
Summary: Let $\Omega \in L^s({\mathrm S}^{n-1})$ for $s\geq 1$ be a homogeneous function of degree zero and $b$ a BMO function. The commutator generated by the Marcinkiewicz integral $\mu _\Omega $ and $b$ is defined by \begin {equation*} \displaystyle [b,\mu _\Omega ] (f)(x)=\biggl (\int ^\infty _0\biggl |\int _{|x-y|\leq t} \frac {\Omega (x-y)}{|x-y|^{n-1}}[b(x)-b(y)]f(y) {\rm d} y\bigg |^2\frac {{\rm d} t}{t^3}\bigg )^{1/2}. \end {equation*} In this paper, the author proves the $(L^{p(\cdot )}(\mathbb {R}^{n}),L^{p(\cdot )}(\mathbb {R}^{n}))$-boundedness of the Marcinkiewicz integral operator $\mu _\Omega $ and its commutator $[b,\mu _\Omega ]$ when $p(\cdot )$ satisfies some conditions. Moreover, the author obtains the corresponding result about $\mu _\Omega $ and $[b,\mu _\Omega ]$ on Herz spaces with variable exponent. (English)
Keyword: Herz space
Keyword: variable exponent
Keyword: commutator
Keyword: Marcinkiewicz integral
MSC: 42B20
MSC: 42B35
idZBL: Zbl 06587888
idMR: MR3483237
DOI: 10.1007/s10587-016-0254-1
.
Date available: 2016-04-07T15:11:43Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144871
.
Reference: [1] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces.Rev. Mat. Iberoam. 23 (2007), 743-770. Zbl 1213.42063, MR 2414490, 10.4171/RMI/511
Reference: [2] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces. Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis Birkhäuser/Springer, New York (2013). Zbl 1268.46002, MR 3026953
Reference: [3] Cruz-Uribe, D., Fiorenza, A., Martell, J. M., Pérez, C.: The boundedness of classical operators on variable $L^p$ spaces.Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264. Zbl 1100.42012, MR 2210118
Reference: [4] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017 Springer, Berlin (2011). Zbl 1222.46002, MR 2790542
Reference: [5] Ding, Y., Fan, D., Pan, Y.: Weighted boundedness for a class of rough Marcinkiewicz integrals.Indiana Univ. Math. J. 48 (1999), 1037-1055. MR 1736970, 10.1512/iumj.1999.48.1696
Reference: [6] Ding, Y., Lu, S., Yabuta, K.: On commutators of Marcinkiewicz integrals with rough kernel.J. Math. Anal. Appl. 275 (2002), 60-68. Zbl 1019.42009, MR 1941772, 10.1016/S0022-247X(02)00230-5
Reference: [7] Izuki, M.: Boundedness of commutators on Herz spaces with variable exponent.Rend. Circ. Mat. Palermo (2) 59 (2010), 199-213. Zbl 1202.42029, MR 2670690, 10.1007/s12215-010-0015-1
Reference: [8] Izuki, M.: Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization.Anal. Math. 36 (2010), 33-50. Zbl 1224.42025, MR 2606575, 10.1007/s10476-010-0102-8
Reference: [9] Kováčik, O., Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592-618. MR 1134951
Reference: [10] Liu, Z., Wang, H.: Boundedness of Marcinkiewicz integrals on Herz spaces with variable exponent.Jordan J. Math. Stat. 5 (2012), 223-239. Zbl 1277.42018
Reference: [11] Muckenhoupt, B., Wheeden, R. L.: Weighted norm inequalities for singular and fractional integrals.Trans. Am. Math. Soc. 161 (1971), 249-258. MR 0285938, 10.1090/S0002-9947-1971-0285938-7
Reference: [12] Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces.J. Funct. Anal. 262 (2012), 3665-3748. Zbl 1244.42012, MR 2899976, 10.1016/j.jfa.2012.01.004
Reference: [13] Stein, E. M.: On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz.Trans. Am. Math. Soc. 88 (1958), 430-466 corr. ibid. 98 186 (1961). MR 0112932, 10.1090/S0002-9947-1958-0112932-2
Reference: [14] Tan, J., Liu, Z. G.: Some boundedness of homogeneous fractional integrals on variable exponent function spaces.Acta Math. Sin., Chin. Ser. 58 (2015), 309-320 Chinese. Zbl 1340.42055, MR 3408398
Reference: [15] Wang, H., Fu, Z., Liu, Z.: Higher-order commutators of Marcinkiewicz integrals on variable Lebesgue spaces.Acta Math. Sci., Ser. A Chin. Ed. 32 (2012), 1092-1101 Chinese. Zbl 1289.42056, MR 3075205
.

Files

Files Size Format View
CzechMathJ_66-2016-1_22.pdf 305.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo