[1] Abresch, U.:
Lower curvature bounds, Toponogov's theorem, and bounded topology. Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), 651-670.
DOI 10.24033/asens.1499 |
MR 0839689
[2] Barroso, C. S., Bessa, G. Pacelli:
Lower bounds for the first Laplacian eigenvalue of geodesic balls of spherically symmetric manifolds. Int. J. Appl. Math. Stat. 6 (2006), Article No. D06, 82-86.
MR 2338140
[3] Chavel, I.:
Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115 Academic Press, Orlando (1984).
MR 0768584
[5] Cheng, S.-Y.:
Eigenfunctions and eigenvalues of Laplacian. Differential Geometry Proc. Sympos. Pure Math. 27, Stanford Univ., Stanford, Calif., 1973, Part 2 Amer. Math. Soc., Providence (1975), 185-193 S. S. Chern et al.
MR 0378003
[10] Hu, Z., Jin, Y., Xu, S.:
A volume comparison estimate with radially symmetric Ricci curvature lower bound and its applications. Int. J. Math. Math. Sci. 2010 (2010), Article ID 758531, 14 pages.
MR 2629591 |
Zbl 1196.53024
[11] Itokawa, Y., Machigashira, Y., Shiohama, K.:
Maximal diameter theorems for manifolds with restricted radial curvature. Proc. of the 5th Pacific Rim Geometry Conf., Tôhoku University, Sendai, Japan, 2000 Tohoku Math. Publ. 20 Tôhoku University, Sendai (2001), 61-68 S. Nishikawa.
MR 1864887 |
Zbl 1065.53033
[12] Kasue, A.:
A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold. Jap. J. Math., New Ser. 8 (1982), 309-341.
DOI 10.4099/math1924.8.309 |
MR 0722530
[16] Mao, J.: Eigenvalue Estimation and some Results on Finite Topological Type. Ph.D. thesis Mathematics department of Instituto Superior Técnico-Universidade Técnica de Lisboa (2013).
[17] Petersen, P.:
Riemannian Geometry. Graduate Texts in Mathematics 171 Springer, New York (2006).
MR 2243772 |
Zbl 1220.53002
[18] Shiohama, K.:
Comparison theorems for manifolds with radial curvature bounded below. Differential Geometry, Proc. of the First International Symposium, Josai University, Saitama, Japan, 2001,
Josai Math. Monogr. 3 Josai University, Graduate School of Science, Saitama (2001), 81-91 Q.-M. Cheng.
MR 1824602 |
Zbl 1037.53018
[19] Zhu, S.:
The comparison geometry of Ricci curvature. Comparison Geometry, Berkeley, 1993-1994 Math. Sci. Res. Inst. Publ. 30 Cambridge University, Cambridge (1997), 221-262 K. Grove et al.
MR 1452876