Previous |  Up |  Next

Article

Title: Points with maximal Birkhoff average oscillation (English)
Author: Li, Jinjun
Author: Wu, Min
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 223-241
Summary lang: English
.
Category: math
.
Summary: Let $f\colon X\to X$ be a continuous map with the specification property on a compact metric space $X$. We introduce the notion of the maximal Birkhoff average oscillation, which is the ``worst'' divergence point for Birkhoff average. By constructing a kind of dynamical Moran subset, we prove that the set of points having maximal Birkhoff average oscillation is residual if it is not empty. As applications, we present the corresponding results for the Birkhoff averages for continuous functions on a repeller and locally maximal hyperbolic set. (English)
Keyword: irregular set
Keyword: maximal Birkhoff average oscillation
Keyword: specification property
Keyword: residual set
MSC: 37C45
MSC: 54E52
MSC: 54H20
idZBL: Zbl 06587886
idMR: MR3483235
DOI: 10.1007/s10587-016-0252-3
.
Date available: 2016-04-07T15:09:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144879
.
Reference: [1] Albeverio, S., Pratsiovytyi, M., Torbin, G.: Topological and fractal properties of real numbers which are not normal.Bull. Sci. Math. 129 (2005), 615-630. Zbl 1088.28003, MR 2166730, 10.1016/j.bulsci.2004.12.004
Reference: [2] Baek, I.-S., Olsen, L.: Baire category and extremely non-normal points of invariant sets of IFS's.Discrete Contin. Dyn. Syst. 27 (2010), 935-943. Zbl 1234.11097, MR 2629566, 10.3934/dcds.2010.27.935
Reference: [3] Barreira, L., Li, J., Valls, C.: Irregular sets are residual.Tohoku Math. J. (2) 66 (2014), 471-489. MR 3350279, 10.2748/tmj/1432229192
Reference: [4] Barreira, L., Schmeling, J.: Sets of ``non-typical'' points have full topological entropy and full Hausdorff dimension.Isr. J. Math. 116 (2000), 29-70. MR 1759398, 10.1007/BF02773211
Reference: [5] Bisbas, A., Snigireva, N.: Divergence points and normal numbers.Monatsh. Math. 166 (2012), 341-356. Zbl 1279.11079, MR 2925141, 10.1007/s00605-011-0289-1
Reference: [6] Bowen, R.: Periodic points and measures for axiom A diffeomorphisms.Trans. Am. Math. Soc. 154 (1971), 377-397. MR 0282372
Reference: [7] Buzzi, J.: Specification on the interval.Trans. Am. Math. Soc. 349 (1997), 2737-2754. MR 1407484, 10.1090/S0002-9947-97-01873-4
Reference: [8] Ercai, C., Küpper, T., Lin, S.: Topological entropy for divergence points.Ergodic Theory Dyn. Syst. 25 (2005), 1173-1208. Zbl 1098.37013, MR 2158401
Reference: [9] Denker, M., Grillenberger, C., Sigmund, K.: Ergodic Theory on Compact Spaces.Lecture Notes in Mathematics 527 Springer, Berlin (1976). MR 0457675
Reference: [10] Fan, A.-H., Feng, D.-J.: On the distribution of long-term time averages on symbolic space.J. Stat. Phys. 99 (2000), 813-856. MR 1766907, 10.1023/A:1018643512559
Reference: [11] Fan, A.-H., Feng, D.-J., Wu, J.: Recurrence, dimension and entropy.J. Lond. Math. Soc., (2) 64 (2001), 229-244. Zbl 1011.37003, MR 1840781, 10.1017/S0024610701002137
Reference: [12] Fan, A., Liao, L., Peyri{è}re, J.: Generic points in systems of specification and Banach valued Birkhoff ergodic average.Discrete Contin. Dyn. Syst. 21 (2008), 1103-1128. Zbl 1153.37318, MR 2399452
Reference: [13] Feng, D.-J., Lau, K.-S., Wu, J.: Ergodic limits on the conformal repellers.Adv. Math. 169 (2002), 58-91. Zbl 1033.37017, MR 1916371, 10.1006/aima.2001.2054
Reference: [14] Hyde, J., Laschos, V., Olsen, L., Petrykiewicz, I., Shaw, A.: Iterated Cesàro averages, frequencies of digits, and Baire category.Acta Arith. 144 (2010), 287-293. Zbl 1226.11077, MR 2672291
Reference: [15] Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems.Encyclopedia of Mathematics and Its Applications 54 Cambridge Univ. Press, Cambridge (1995). Zbl 0878.58020, MR 1326374
Reference: [16] Li, J., Li, B.: Hausdorff dimensions of some irregular sets associated with $\beta$-expansions.Sci. China Math. 59 (2016), 445-458. Zbl 1338.11076, MR 3457047, 10.1007/s11425-015-5046-9
Reference: [17] Li, J., Wu, M.: A note on the rate of returns in random walks.Arch. Math. (Basel) 102 (2014), 493-500. Zbl 1296.54034, MR 3254792, 10.1007/s00013-014-0645-1
Reference: [18] Li, J., Wu, M.: Generic property of irregular sets in systems satisfying the specification property.Discrete Contin. Dyn. Syst. 34 (2014), 635-645. Zbl 1280.54024, MR 3094597
Reference: [19] Li, J., Wu, M.: Divergence points in systems satisfying the specification property.Discrete Contin. Dyn. Syst. 33 (2013), 905-920. Zbl 1271.37026, MR 2975141, 10.3934/dcds.2013.33.905
Reference: [20] Li, J., Wu, M.: The sets of divergence points of self-similar measures are residual.J. Math. Anal. Appl. 404 (2013), 429-437. Zbl 1304.28008, MR 3045184, 10.1016/j.jmaa.2013.03.043
Reference: [21] Li, J., Wu, M., Xiong, Y.: Hausdorff dimensions of the divergence points of self-similar measures with the open set condition.Nonlinearity 25 (2012), 93-105. Zbl 1236.28007, MR 2864378, 10.1088/0951-7715/25/1/93
Reference: [22] Olsen, L.: Extremely non-normal numbers.Math. Proc. Camb. Philos. Soc. 137 (2004), 43-53. Zbl 1128.11038, MR 2075041, 10.1017/S0305004104007601
Reference: [23] Olsen, L.: Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages.J. Math. Pures Appl. (9) 82 (2003), 1591-1649. Zbl 1035.37025, MR 2025314, 10.1016/j.matpur.2003.09.007
Reference: [24] Olsen, L., Winter, S.: Normal and non-normal points of self-similar sets and divergence points of self-similar measures.J. Lond. Math. Soc., (2) 67 (2003), 103-122. Zbl 1040.28014, MR 1942414, 10.1112/S0024610702003630
Reference: [25] Oxtoby, J. C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces.Graduate Texts in Mathematics, Vol. 2 Springer, New York (1980). MR 0584443
Reference: [26] Pitskel, B. S.: Topological pressure on noncompact sets.Funct. Anal. Appl. 22 (1988), 240-241 translation from Funkts. Anal. Prilozh. 22 (1988), 83-84. MR 0961770
Reference: [27] Pollicott, M., Weiss, H.: Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation.Commun. Math. Phys. 207 (1999), 145-171. MR 1724859, 10.1007/s002200050722
Reference: [28] Ruelle, D.: Thermodynamic Formalism. The Mathematical Structures of Equilibrium Stastistical Mechanics.Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). MR 2129258
Reference: [29] Šalát, T.: A remark on normal numbers.Rev. Roum. Math. Pures Appl. 11 (1966), 53-56. MR 0201386
Reference: [30] Sigmund, K.: On dynamical systems with the specification property.Trans. Am. Math. Soc. 190 (1974), 285-299. MR 0352411, 10.1090/S0002-9947-1974-0352411-X
Reference: [31] Takens, F., Verbitskiy, E.: On the variational principle for the topological entropy of certain non-compact sets.Ergodic Theory Dyn. Syst. 23 (2003), 317-348. Zbl 1042.37020, MR 1971209
Reference: [32] Thompson, D.: The irregular set for maps with the specification property has full topological pressure.Dyn. Syst. 25 (2010), 25-51. Zbl 1186.37034, MR 2765447, 10.1080/14689360903156237
Reference: [33] Volkmann, B.: Gewinnmengen.Arch. Math. 10 German (1959), 235-240. MR 0105319
.

Files

Files Size Format View
CzechMathJ_66-2016-1_20.pdf 310.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo