[2] Bramanti, M., Cerutti, C. M.: 
Commutators of singular integrals on homogeneous spaces. Boll. Unione Mat. Ital. 10 (1996), 843-883. 
MR 1430157 
[3] Cao, J., Liu, Y., Yang, D.: 
Hardy spaces $H^1_{\mathcal L}({\mathbb R}^n)$ associated to Schrödinger type operators $(-\Delta)^2+V^2$. Houston J. Math. 36 (2010), 1067-1095. 
MR 2753734 
[4] Coifman, R. R., Rochberg, R., Weiss, G.: 
Factorization theorem for Hardy spaces in several variables. Ann. Math. 103 (1976), 611-635. 
DOI 10.2307/1970954 | 
MR 0412721 
[6] Dziubański, J., Zienkiewicz, J.: 
Hardy space $H^1$ associated to Schrödinger operators with potentials satisfying reverse Hölder inequality. Rev. Mat. Iberoam 15 (1999), 279-296. 
DOI 10.4171/RMI/257 | 
MR 1715409 
[7] Guo, Z., Li, P., Peng, L.: 
$L^p$ boundedness of commutators of Riesz transform associated to Schrödinger operator. J. Math. Anal. Appl. 341 (2008), 421-432. 
DOI 10.1016/j.jmaa.2007.05.024 | 
MR 2394095 
[13] Liu, Y., Huang, J. Z., Dong, J. F.: 
Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrödinger operators. Sci. China. Math. 56 (2013), 1895-1913. 
DOI 10.1007/s11425-012-4551-3 | 
MR 3090862 | 
Zbl 1278.42031 
[15] Liu, Y., Sheng, J.: 
Some estimates for commutators of Riesz transforms associated with Schrödinger operators. J. Math. Anal. Appl. 419 (2014), 298-328. 
DOI 10.1016/j.jmaa.2014.04.053 | 
MR 3217150 
[16] Liu, Y., Wang, L., Dong, J.: 
Commutators of higher order Riesz transform associated with Schrödinger operators. J. Funct. Spaces Appl. 2013 (2013), Article ID 842375, 15 pages. 
MR 3053277 | 
Zbl 1279.47052 
[17] Shen, Z.: 
$L^{p}$ estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546. 
DOI 10.5802/aif.1463 | 
MR 1343560 
[18] Sugano, S.: 
$L^p$ estimates for some Schrödinger operators and a Calderón-Zygmund operator of Schrödinger type. Tokyo J. Math. 30 (2007), 179-197. 
DOI 10.3836/tjm/1184963655 | 
MR 2328062 
[19] Zhong, J.: 
Harmonic Analysis for some Schrödinger Type Operators. Ph.D. Thesis, Princeton University (1993). 
MR 2689454