[2] Bramanti, M., Cerutti, C. M.:
Commutators of singular integrals on homogeneous spaces. Boll. Unione Mat. Ital. 10 (1996), 843-883.
MR 1430157
[3] Cao, J., Liu, Y., Yang, D.:
Hardy spaces $H^1_{\mathcal L}({\mathbb R}^n)$ associated to Schrödinger type operators $(-\Delta)^2+V^2$. Houston J. Math. 36 (2010), 1067-1095.
MR 2753734
[4] Coifman, R. R., Rochberg, R., Weiss, G.:
Factorization theorem for Hardy spaces in several variables. Ann. Math. 103 (1976), 611-635.
DOI 10.2307/1970954 |
MR 0412721
[6] Dziubański, J., Zienkiewicz, J.:
Hardy space $H^1$ associated to Schrödinger operators with potentials satisfying reverse Hölder inequality. Rev. Mat. Iberoam 15 (1999), 279-296.
DOI 10.4171/RMI/257 |
MR 1715409
[7] Guo, Z., Li, P., Peng, L.:
$L^p$ boundedness of commutators of Riesz transform associated to Schrödinger operator. J. Math. Anal. Appl. 341 (2008), 421-432.
DOI 10.1016/j.jmaa.2007.05.024 |
MR 2394095
[13] Liu, Y., Huang, J. Z., Dong, J. F.:
Commutators of Calderón-Zygmund operators related to admissible functions on spaces of homogeneous type and applications to Schrödinger operators. Sci. China. Math. 56 (2013), 1895-1913.
DOI 10.1007/s11425-012-4551-3 |
MR 3090862 |
Zbl 1278.42031
[15] Liu, Y., Sheng, J.:
Some estimates for commutators of Riesz transforms associated with Schrödinger operators. J. Math. Anal. Appl. 419 (2014), 298-328.
DOI 10.1016/j.jmaa.2014.04.053 |
MR 3217150
[16] Liu, Y., Wang, L., Dong, J.:
Commutators of higher order Riesz transform associated with Schrödinger operators. J. Funct. Spaces Appl. 2013 (2013), Article ID 842375, 15 pages.
MR 3053277 |
Zbl 1279.47052
[17] Shen, Z.:
$L^{p}$ estimates for Schrödinger operators with certain potentials. Ann. Inst. Fourier (Grenoble) 45 (1995), 513-546.
DOI 10.5802/aif.1463 |
MR 1343560
[18] Sugano, S.:
$L^p$ estimates for some Schrödinger operators and a Calderón-Zygmund operator of Schrödinger type. Tokyo J. Math. 30 (2007), 179-197.
DOI 10.3836/tjm/1184963655 |
MR 2328062
[19] Zhong, J.:
Harmonic Analysis for some Schrödinger Type Operators. Ph.D. Thesis, Princeton University (1993).
MR 2689454