Previous |  Up |  Next

Article

Title: Differences of two semiconvex functions on the real line (English)
Author: Kryštof, Václav
Author: Zajíček, Luděk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 21-37
Summary lang: English
.
Category: math
.
Summary: It is proved that real functions on $\mathbb R$ which can be represented as the difference of two semiconvex functions with a general modulus (or of two lower $C^1$-functions, or of two strongly paraconvex functions) coincide with semismooth functions on $\mathbb R$ (i.e. those locally Lipschitz functions on $\mathbb R$ for which $f'_+(x) = \lim_{t \to x+} f'_+(t)$ and $f'_-(x) = \lim_{t \to x-} f'_-(t)$ for each $x$). Further, for each modulus $\omega$, we characterize the class $DSC_{\omega}$ of functions on $\mathbb R$ which can be written as $f=g-h$, where $g$ and $h$ are semiconvex with modulus $C\omega$ (for some $C>0$) using a new notion of $[\omega]$-variation. We prove that $f \in DSC_{\omega}$ if and only if $f$ is continuous and there exists $D>0$ such that $f'_+$ has locally finite $[D \omega]$-variation. This result is proved via a generalization of the classical Jordan decomposition theorem which characterizes the differences of two $\omega$-nondecreasing functions (defined by the inequality $f(y) \geq f(x)- \omega(y-x)$ for $y>x$) on $[a,b]$ as functions with finite $[2\omega]$-variation. The research was motivated by a recent article by J. Duda and L. Zajíček on Gâteaux differentiability of semiconvex functions, in which surfaces described by differences of two semiconvex functions naturally appear. (English)
Keyword: semiconvex function with general modulus
Keyword: difference of two semiconvex functions
Keyword: $\omega$-nondecreasing function
Keyword: $[\omega]$-variation
Keyword: regulated function
MSC: 26A45
MSC: 26A48
MSC: 26A51
MSC: 26B05
idZBL: Zbl 06562193
idMR: MR3478336
DOI: 10.14712/1213-7243.2015.153
.
Date available: 2016-04-12T05:01:37Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144912
.
Reference: [1] Benyamini Y., Lindenstrauss J.: Geometric Nonlinear Functional Analysis.Vol. 1, Colloquium Publications, 48, American Mathematical Society, Providence, 2000. Zbl 0946.46002, MR 1727673
Reference: [2] Bruckner A.: Differentiation of Real Functions.CRM Monograph Series, 5, American Mathematical Society, Providence, RI, 1994. MR 1274044
Reference: [3] Correa R., Jofré A.: Tangentially continuous directional derivatives in nonsmooth analysis.J. Optim. Theory Appl. 61 (1989), 1–21. MR 0993912, 10.1007/BF00940840
Reference: [4] Cannarsa P., Sinestrari C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control.Progress in Nonlinear Differential Equations and their Applications 58, Birkhäuser, Boston, 2004. Zbl 1095.49003, MR 2041617
Reference: [5] Duda J., Zajíček L.: Semiconvex functions: representations as suprema of smooth functions and extensions.J. Convex Anal. 16 (2009), 239–260. MR 2531202
Reference: [6] Duda J., Zajíček L.: Smallness of singular sets of semiconvex functions in separable Banach spaces.J. Convex Anal. 20 (2013), 573–598. MR 3098482
Reference: [7] Fabian M.: Gâteaux Differentiability of Convex Functions and Topology. Weak Asplund Spaces.Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1997. Zbl 0883.46011, MR 1461271
Reference: [8] Fraňková D.: Regulated functions.Math. Bohem. 116 (1991), 20–59. MR 1100424
Reference: [9] Goffman C., Moran G., Waterman D.: The structure of regulated functions.Proc. Amer. Math. Soc. 57 (1976), 61–65. MR 0401993, 10.1090/S0002-9939-1976-0401993-5
Reference: [10] Jourani A., Thibault L., Zagrodny D.: $C^{1,\omega(\cdot)}$-regularity and Lipschitz-like properties of subdifferential.Proc. London Math. Soc. 105 (2012), 189–223. MR 2948792
Reference: [11] Mifflin R.: Semismooth and semiconvex functions in constrained optimization.SIAM J. Control Optimization 15 (1977), 959–972. Zbl 0376.90081, MR 0461556, 10.1137/0315061
Reference: [12] Nagai H.V., Luc D.T., Théra M.: Approximate convex functions.J. Nonlinear Convex Anal. 1 (2000), 155–176. MR 1777137
Reference: [13] Spingarn J. E.: Submonotone subdifferentials of Lipschitz functions.Trans. Amer. Math. Soc. 264 (1981) 77–89. Zbl 0465.26008, MR 0597868, 10.1090/S0002-9947-1981-0597868-8
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_3.pdf 293.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo