Previous |  Up |  Next

Article

Title: The Rothberger property on $C_p(\Psi(\mathcal A),2)$ (English)
Author: Bernal-Santos, Daniel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 83-88
Summary lang: English
.
Category: math
.
Summary: A space $X$ is said to have the Rothberger property (or simply $X$ is Rothberger) if for every sequence $\langle\,\mathcal U_n:n\in \omega\,\rangle$ of open covers of $X$, there exists $U_n\in \mathcal U_n$ for each $n\in\omega$ such that $X = \bigcup_{n\in \omega}U_n$. For any $n\in \omega$, necessary and sufficient conditions are obtained for $C_p(\Psi(\mathcal A),2)^n$ to have the Rothberger property when $\mathcal A$ is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family $\mathcal A$ for which the space $C_p(\Psi(\mathcal A),2)^n\,$ is Rothberger for all $n\in\omega$. (English)
Keyword: function spaces
Keyword: $C_p(X,Y)$
Keyword: Rothberger spaces
Keyword: $\Psi$-space
MSC: 03G10
MSC: 54C35
MSC: 54C45
MSC: 54D35
MSC: 54D45
idZBL: Zbl 06562198
idMR: MR3478341
DOI: 10.14712/1213-7243.2015.145
.
Date available: 2016-04-12T05:05:38Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144917
.
Reference: [1] Arhangel'skiĭ A.V.: Topological Function Spaces.Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers, 1992. MR 1144519
Reference: [2] Bernal-Santos D.: The Rothberger property on $C_p(X, 2)$.Topology Appl. 196 (2015), 106–119. MR 3422736
Reference: [3] Bernal-Santos D., Tamariz-Macarúa Á.: The Menger property on $C_p(X,2)$.Topology Appl. 183 (2015), 110–126. MR 3310340
Reference: [4] Hurewicz W.: Über eine Verallgemeinerung des Borelschen Theorems.Math. Z. 24 (1926), 401–421. MR 1544773, 10.1007/BF01216792
Reference: [5] Just W., Miller W., Scheepers M., Szeptycki J.: The combinatorics of open covers II.Topology Appl. 73 (1996), 241–266. MR 1419798, 10.1016/S0166-8641(96)00075-2
Reference: [6] Hrušák M., Szeptycki P.J., Tamariz-Mascarúa Á.: Spaces of functions defined on Mrówka spaces.Topology Appl. 148 (2005), no. (1-3), 239–252. MR 2118968, 10.1016/j.topol.2004.09.009
Reference: [7] Rothberger F.: Eine Verschärfung der Eigenschaft C.Fund. Math. 30 (1938), 50–55.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_8.pdf 220.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo