Previous |  Up |  Next

Article

Title: Some results on spaces with $\aleph_1$-calibre (English)
Author: Xuan, Wei-Feng
Author: Shi, Wei-Xue
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 131-134
Summary lang: English
.
Category: math
.
Summary: We prove that, assuming \emph{CH}, if $X$ is a space with $\aleph_1$-calibre and a zeroset diagonal, then $X$ is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular $G_\delta$-diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469--473. We also make some observations on spaces with $\aleph_1$-calibre. (English)
Keyword: $\aleph_1$-calibre
Keyword: star countable
Keyword: zeroset diagonal
MSC: 54D20
MSC: 54E35
idZBL: Zbl 06562203
idMR: MR3478346
DOI: 10.14712/1213-7243.2015.154
.
Date available: 2016-04-12T05:11:00Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144922
.
Reference: [1] Buzyakova R.Z.: Observations on spaces with zeroset or regular $G_\delta$-diagonals.Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. MR 2174525
Reference: [2] Buzyakova R.Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals.Topology Appl. 153 (2006), no. 11, 1696–1698. MR 2227022, 10.1016/j.topol.2005.06.004
Reference: [3] Basile D., Bella A., Ridderbos G.J.: Weak extent, submetrizability and diagonal degrees.Houston J. Math. 40 (2014), no. 1, 255–266. MR 3210565
Reference: [4] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [5] Ikenaga S.: A class which contains Lindelöf spaces, separable spaces and countably compact spaces.Memoirs of Numazu College of Technology 18 (1983), 105–108.
Reference: [6] Martin H.W.: Contractibility of topological spaces onto metric spaces.Pacific J. Math. 61 (1975), no. 1, 209–217. MR 0410685, 10.2140/pjm.1975.61.209
Reference: [7] Wage M.L., Fleissner W.G., Reed G.M.: Normality versus countable paracompactness in perfect spaces.Bull. Amer. Math. Soc. 82 (1976), no. 4, 635–639. MR 0410665, 10.1090/S0002-9904-1976-14150-X
Reference: [8] Tall F.D.: First Countable Space with $\aleph_1$-Calibre May or May not be Separable.Set-theoretic Topology, Academic Press, New York, 1977. MR 0500795
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_13.pdf 191.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo