Previous |  Up |  Next

Article

Title: On some new sharp embedding theorems in minimal and pseudoconvex domains (English)
Author: Shamoyan, Romi F.
Author: Mihić, Olivera R.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 527-546
Summary lang: English
.
Category: math
.
Summary: We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in $\mathbb {C}^{n}.$ Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the $r$-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones. (English)
Keyword: embedding theorem
Keyword: minimal domain
Keyword: pseudoconvex domain
Keyword: Bergman-type space
MSC: 42B15
MSC: 42B30
idZBL: Zbl 06604484
idMR: MR3519619
DOI: 10.1007/s10587-016-0273-y
.
Date available: 2016-06-16T13:01:55Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145741
.
Reference: [1] Abate, M., Raissy, J., Saracco, A.: Toeplitz operators and Carleson measures in strongly pseudoconvex domains.J. Funct. Anal. 263 (2012), 3449-3491. Zbl 1269.32003, MR 2984073, 10.1016/j.jfa.2012.08.027
Reference: [2] Abate, M., Saracco, A.: Carleson measures and uniformly discrete sequences in strongly pseudoconvex domains.J. Lond. Math. Soc., Ser. (2) 83 (2011), 587-605. Zbl 1227.32008, MR 2802500, 10.1112/jlms/jdq092
Reference: [3] Arsenović, M., Shamoyan, R. F.: On distance estimates and atomic decompositions in spaces of analytic functions on strictly pseudoconvex domains.Bull. Korean Math. Soc. 52 (2015), 85-103. Zbl 1308.32037, MR 3313426, 10.4134/BKMS.2015.52.1.085
Reference: [4] F. Beatrous, Jr.: $L^p$-estimates for extensions of holomorphic functions.Mich. Math. J. 32 (1985), 361-380. MR 0803838, 10.1307/mmj/1029003244
Reference: [5] Carleson, L.: Interpolations by bounded analytic functions and the corona problem.Ann. Math. (2) 76 (1962), 547-559. Zbl 0112.29702, MR 0141789, 10.2307/1970375
Reference: [6] Cima, J. A., Mercer, P. R.: Composition operators between Bergman spaces on convex domains in $\mathbb C^n$.J. Oper. Theory 33 (1995), 363-369. MR 1354986
Reference: [7] Cima, J. A., Wogen, W. R.: A Carleson measure theorem for the Bergman space on the ball.J. Oper. Theory 7 (1982), 157-163. Zbl 0499.42011, MR 0650200
Reference: [8] Cohn, W. S.: Tangential characterizations of BMOA on strictly pseudoconvex domains.Math. Scand. 73 (1993), 259-273. Zbl 0815.32012, MR 1269263, 10.7146/math.scand.a-12470
Reference: [9] Djrbashian, A. E., Shamoyan, F. A.: Topics in the Theory of $A^p_\alpha$ Spaces.Teubner-Texte zur Mathematik 105 Teubner, Leipzig (1988). MR 1021691
Reference: [10] Engliš, M., Hänninen, T. T., Taskinen, J.: Minimal $L^\infty$-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous.Houston J. Math. 32 (2006), 253-275. Zbl 1113.46017, MR 2202364
Reference: [11] Hastings, W. W.: A Carleson measure theorem for Bergman spaces.Proc. Am. Math. Soc. 52 (1975), 237-241. Zbl 0296.31009, MR 0374886, 10.1090/S0002-9939-1975-0374886-9
Reference: [12] Jimbo, T., Sakai, A.: Interpolation manifolds for products of strictly pseudoconvex domains.Complex Variables, Theory Appl. 8 (1987), 333-341. Zbl 0587.32032, MR 0898073, 10.1080/17476938708814242
Reference: [13] Kobayashi, S.: Hyperbolic Complex Spaces.Grundlehren der Mathematischen Wissenschaften 318 Springer, Berlin (1998). Zbl 0917.32019, MR 1635983, 10.1007/978-3-662-03582-5
Reference: [14] Krantz, S. G.: Function Theory of Several Complex Variables.Pure and Applied Mathematics A Wiley-Interscience Publication. John Wiley & Sons, New York (1982). Zbl 0471.32008, MR 0635928
Reference: [15] Li, H.: BMO, VMO and Hankel operators on the Bergman space of strongly pseudoconvex domains.J. Funct. Anal. 106 (1992), 375-408. Zbl 0793.47025, MR 1165861, 10.1016/0022-1236(92)90054-M
Reference: [16] Li, S.-Y., Luo, W.: Analysis on Besov spaces I\kern-1ptI: Embedding and duality theorems.J. Math. Anal. Appl. 333 (2007), 1189-1202. MR 2331724, 10.1016/j.jmaa.2006.03.074
Reference: [17] Li, S., Shamoyan, R.: On some estimates and Carleson type measure for multifunctional holomorphic spaces in the unit ball.Bull. Sci. Math. 134 (2010), 144-154. Zbl 1187.32003, MR 2592966, 10.1016/j.bulsci.2008.04.003
Reference: [18] Li, S., Shamoyan, R.: On some properties of analytic spaces connected with Bergman metric ball.Bull. Iran. Math. Soc. 34 (2008), 121-139. Zbl 1182.32002, MR 2477998
Reference: [19] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces.Proc. Am. Math. Soc. 87 (1983), 656-660. Zbl 0521.32005, MR 0687635, 10.1090/S0002-9939-1983-0687635-6
Reference: [20] McNeal, J. D., Stein, E. M.: Mapping properties of the Bergman projection on convex domains of finite type.Duke Math. J. 73 (1994), 177-199. Zbl 0801.32008, MR 1257282
Reference: [21] Oleinik, V. L.: Embedding theorems for weighted classes of harmonic and analytic functions.J. Sov. Math. 9 (1978), 228-243. Zbl 0396.31001, 10.1007/BF01578546
Reference: [22] Oleinik, V. L., Pavlov, B. S.: Embedding theorems for weighted classes of harmonic and analytic functions.J. Sov. Math. 2 (1974), 135-142. MR 0318867, 10.1007/BF01099672
Reference: [23] Ortega, J. M., Fàbrega, J.: Mixed-norm spaces and interpolation.Stud. Math. 109 (1994), 233-254. Zbl 0826.32003, MR 1274011
Reference: [24] Range, R. M.: Holomorphic Functions and Integral Representations in Several Complex Variables.Graduate Texts in Mathematics 108 Springer, New York (1986). Zbl 0591.32002, MR 0847923, 10.1007/978-1-4757-1918-5
Reference: [25] Shamoyan, R. F., Kurilenko, S. M., Sergey, M.: On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of $n$-dimensional complex space.Journal of Siberian Federal University 7 (2014), 383-388.
Reference: [26] Shamoyan, R. F., Mihić, O. R.: On distance function in some new analytic Bergman type spaces in $\Bbb C^n$.J. Funct. Spaces (2014), Article ID 275416, 10 pages. MR 3208648
Reference: [27] Shamoyan, R. F., Mihić, O. R.: On new estimates for distances in analytic function spaces in higher dimension.Sib. Èlektron. Mat. Izv. (electronic only) 6 (2009), 514-517. Zbl 1299.30106, MR 2586703
Reference: [28] Shamoyan, R. F., Mihić, O. R.: On some properties of holomorphic spaces based on Bergman metric ball and Luzin area operator.J. Nonlinear Sci. Appl. 2 (2009), 183-194. Zbl 1181.32009, MR 2521196, 10.22436/jnsa.002.03.07
Reference: [29] Shamoyan, R., Povprits, E.: Sharp theorems on traces in analytic spaces in tube domains over symmetric cones.Journal of Siberian Federal University 6 (2013), 527-538. MR 3496285
Reference: [30] Shamoyan, R. F., Povprits, E. V.: Multifunctional analytic spaces on products of bounded strictly pseudoconvex domains and embedding theorems.Kragujevac J. Math. 37 (2013), 221-244. MR 3150861
Reference: [31] Shamoyan, R., Radnia, M.: On some new embedding theorems for some analytic classes in the unit ball.J. Nonlinear Sci. Appl. 2 (2009), 243-250. Zbl 1181.32010, MR 2562265, 10.22436/jnsa.002.04.06
Reference: [32] Yamaji, S.: Composition operators on the Bergman spaces of a minimal bounded homogeneous domain.Hiroshima Math. J. 43 (2013), 107-127. Zbl 1304.47034, MR 3066527, 10.32917/hmj/1368217952
Reference: [33] Yamaji, S.: Positive Toeplitz operators on weighted Bergman spaces of a minimal bounded homogeneous domain.J. Math. Soc. Japan 65 (2013), 1101-1115. Zbl 1284.47025, MR 3127818, 10.2969/jmsj/06541101
Reference: [34] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226 Springer, New York (2005). Zbl 1067.32005, MR 2115155
.

Files

Files Size Format View
CzechMathJ_66-2016-2_18.pdf 335.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo