Previous |  Up |  Next

Article

Title: Ricci and scalar curvatures of submanifolds of a conformal Sasakian space form (English)
Author: Abedi, Esmaeil
Author: Ziabari, Reyhane Bahrami
Author: Tripathi, Mukut Mani
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 2
Year: 2016
Pages: 113-130
Summary lang: English
.
Category: math
.
Summary: We introduce a conformal Sasakian manifold and we find the inequality involving Ricci curvature and the squared mean curvature for semi-invariant, almost semi-invariant, $\theta $-slant, invariant and anti-invariant submanifolds tangent to the Reeb vector field and the equality cases are also discussed. Also the inequality involving scalar curvature and the squared mean curvature of some submanifolds of a conformal Sasakian space form are obtained. (English)
Keyword: Ricci curvature
Keyword: scalar curvature
Keyword: squared mean curvature
Keyword: conformal Sasakian space form
MSC: 53C25
MSC: 53C40
MSC: 53D15
idZBL: Zbl 06644062
idMR: MR3535632
DOI: 10.5817/AM2016-2-113
.
Date available: 2016-07-19T11:27:37Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145745
.
Reference: [1] Bejancu, A.: Geometry of CR-submanifolds.Mathematics and its Applications (East European Series), vol. 23, D. Reidel Publishing Co., Dordrecht, 1986. Zbl 0605.53001, MR 0861408
Reference: [2] Blair, D.E.: Contact manifolds in Riemannian geometry.Math., vol. 509, Springer-Verlag, New York, 1976. Zbl 0319.53026, MR 0467588
Reference: [3] Blair, D.E.: Riemannian geometry of contact and symplectic manifolds.Progress in Mathematics, vol. 203, Birkhauser Boston, Inc., Boston, MA, 2002. Zbl 1011.53001, MR 1874240
Reference: [4] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Slant submanifolds in Sasakian manifolds.Glasgow Math. J. 42 (1) (2000), 125–138. Zbl 0957.53022, MR 1739684, 10.1017/S0017089500010156
Reference: [5] Chen, B.Y.: Some pinching and classification theorems for minimal submanifolds.Arch. Math. (Basel) 60 (6) (1993), 568–578. Zbl 0811.53060, MR 1216703, 10.1007/BF01236084
Reference: [6] Chen, B.Y.: Mean curvature and shape operator of isometric immersions in real space form.Glasgow Math. J. 38 (1996), 87–97. MR 1373963, 10.1017/S001708950003130X
Reference: [7] Chen, B.Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions.Glasgow Math. J. 41 (1999), 33–41. Zbl 0962.53015, MR 1689730, 10.1017/S0017089599970271
Reference: [8] Chen, B.Y.: On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms.Arch. Math. (Basel) 74 (2000), 154–160. Zbl 1037.53041, MR 1735232, 10.1007/PL00000420
Reference: [9] Defever, F., Mihai, I., Verstrelen, L.: B.Y.Chen’s inequality for $C$-totally real submanifolds of Sasakian space forms.Boll. Un. Mat. Ital. B (7) 11 (1997), 365–374. MR 1459285
Reference: [10] Hong, S., Tripathi, M.M.: On Ricci curvature of submanifolds.Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 227–245. Zbl 1131.53309, MR 2294062
Reference: [11] Hong, S., Tripathi, M.M.: On Ricci curvature of submanifolds of generalized Sasakian space forms.Internat. J. Pure Appl. Math. Sci. 2 (2) (2005), 173–201. Zbl 1131.53308, MR 2294058
Reference: [12] Hong, S., Tripathi, M.M.: Ricci curvature of submanifolds of a Sasakian space form.Iranian Journal of Mathematical Sciences and Informatics 1 (2) (2006), 31–51. Zbl 1301.53051, MR 2294062
Reference: [13] Mihai, I.: Ricci curvature of submanifolds in Sasakian space forms.J. Austral. Math. Soc. 72 (2002), 247–256. Zbl 1017.53052, MR 1887135, 10.1017/S1446788700003888
Reference: [14] Petersen, P.: Riemannian geometry.Springer-Verlag, 2006. Zbl 1220.53002, MR 2243772
Reference: [15] Tripathi, M.M.: Almost semi-invariant submanifolds of trans-Sasakian manifolds.J. Indian Math. Soc. (N.S.) 62 (1–4) (1996), 225–245. Zbl 0901.53040, MR 1458496
Reference: [16] Vaisman, I.: Conformal changes of almost contact metric structures.Geometry and Differential Geometry, Lecture Notes in Math., vol. 792, 1980, pp. 435–443. Zbl 0431.53030, MR 0585886
Reference: [17] Yamaguchi, S., Kon, M., Ikawa, T.: C-totallly real submanifolds.J. Differential Geom. 11 (1) (1976), 59–64. MR 0405294, 10.4310/jdg/1214433297
.

Files

Files Size Format View
ArchMathRetro_052-2016-2_4.pdf 533.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo