Previous |  Up |  Next

Article

Title: On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_R(I)$ conjecture (English)
Author: Nasehpour, Peyman
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 2
Year: 2016
Pages: 71-78
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative ring with an identity different from zero and $n$ be a positive integer. Anderson and Badawi, in their paper on $n$-absorbing ideals, define a proper ideal $I$ of a commutative ring $R$ to be an $n$-absorbing ideal of $R$, if whenever $x_1 \dots x_{n+1} \in I$ for $x_1, \ldots , x_{n+1} \in R$, then there are $n$ of the $x_i$’s whose product is in $I$ and conjecture that $\omega _{R[X]}(I[X])=\omega _R(I)$ for any ideal $I$ of an arbitrary ring $R$, where $\omega _R(I)= \min \lbrace n\colon I \text{is} \text{an} n\text{-absorbing} \text{ideal} \text{of} R\rbrace $. In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following conditions hold: The ring $R$ is a Prüfer domain. The ring $R$ is a Gaussian ring such that its additive group is torsion-free. The additive group of the ring $R$ is torsion-free and $I$ is a radical ideal of $R$. (English)
Keyword: $n$-absorbing ideals
Keyword: strongly $n$-absorbing ideals
Keyword: polynomial rings
Keyword: content algebras
Keyword: Dedekind-Mertens content formula
Keyword: Prüfer domains
Keyword: Gaussian algebras
Keyword: Gaussian rings
MSC: 13A15
MSC: 13B02
MSC: 13B25
MSC: 13F05
idZBL: Zbl 06644059
idMR: MR3535629
DOI: 10.5817/AM2016-2-71
.
Date available: 2016-07-19T11:25:51Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145746
.
Reference: [1] Anderson, D.D., Camillo, V.: Armendariz rings and Gaussian rings.Comm. Algebra 26 (1998), 2265–2272. Zbl 0915.13001, MR 1626606, 10.1080/00927879808826274
Reference: [2] Anderson, D.D., Kang, B.G.: Content formulas for polynomials and power series and complete integral closure.J. Algebra 181 (1996), 82–94. Zbl 0857.13017, MR 1382027, 10.1006/jabr.1996.0110
Reference: [3] Anderson, D.F., Badawi, A.: On $n$-absorbing ideals of commutative rings.Comm. Algebra 39 (2011), 1646–1672. Zbl 1232.13001, MR 2821499, 10.1080/00927871003738998
Reference: [4] Arnold, J.T., Gilmer, R.: On the content of polynomials.Proc. Amer. Math. Soc. 40 (1970), 556–562. MR 0252360, 10.1090/S0002-9939-1970-0252360-3
Reference: [5] Badawi, A.: On $2$-absorbing ideals of commutative rings.Bull. Austral. Math. Soc. 75 (2007), 417–429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344
Reference: [6] Bazzoni, S., Glaz, S.: Gaussian properties of total rings of quotients.J. Algebra 310 (1) (2007), 180–193. Zbl 1118.13020, MR 2307788, 10.1016/j.jalgebra.2007.01.004
Reference: [7] Bruns, W., Guerrieri, A.: The Dedekind-Mertens formula and determinantal rings.Proc. Amer. Math. Soc. 127 (3) (1999), 657–663. Zbl 0915.13008, MR 1468185, 10.1090/S0002-9939-99-04535-9
Reference: [8] Darani, A.Y., Puczyłowski, E.R.: On $2$-absorbing commutative semigroups and their applications to rings.Semigroup Forum 86 (2013), 83–91. Zbl 1270.20064, MR 3016263, 10.1007/s00233-012-9417-z
Reference: [9] Eakin, P., Silver, J.: Rings which are almost polynomial rings.Trans. Amer. Math. Soc. 174 (1974), 425–449. MR 0309924, 10.1090/S0002-9947-1972-0309924-4
Reference: [10] Epstein, N., Shapiro, J.: A Dedekind-Mertens theorem for power series rings.Proc. Amer. Math. Soc. 144 (2016), 917–924. Zbl 1332.13018, MR 3447645, 10.1090/proc/12661
Reference: [11] Fields, D.E.: Zero divisors and nilpotent elements in power series rings.Proc. Amer. Math. Soc. 27 (3) (1971), 427–433. Zbl 0219.13023, MR 0271100, 10.1090/S0002-9939-1971-0271100-6
Reference: [12] Gilmer, R.: Some applications of the Hilfssatz von Dedekind-Mertens.Math. Scand. 20 (1967), 240–244. Zbl 0167.03602, MR 0236159, 10.7146/math.scand.a-10833
Reference: [13] Gilmer, R.: Multiplicative Ideal Theory.Marcel Dekker, New York, 1972. Zbl 0248.13001, MR 0427289
Reference: [14] Gilmer, R., Grams, A., Parker, T.: Zero divisors in power series rings.J. Reine Angew. Math. 278 (1975), 145–164. Zbl 0309.13009, MR 0387274
Reference: [15] Heinzer, W., Huneke, C.: The Dedekind-Mertens Lemma and the content of polynomials.Proc. Amer. Math. Soc. 126 (1998), 1305–1309. MR 1425124, 10.1090/S0002-9939-98-04165-3
Reference: [16] Loper, K.A., Roitman, M.: The content of a Gaussian polynomial is invertible.Proc. Amer. Math. Soc. 133 (2005), 1267–1271. Zbl 1137.13301, MR 2111931, 10.1090/S0002-9939-04-07826-8
Reference: [17] Nasehpour, P.: Zero-divisors of content algebras.Arch. Math. (Brno) 46 (4) (2010). Zbl 1240.13002, MR 2754063
Reference: [18] Nasehpour, P.: Zero-divisors of semigroup modules.Kyungpook Math. J. 51 (1) (2011), 37–42. Zbl 1218.13005, MR 2784646, 10.5666/KMJ.2011.51.1.037
Reference: [19] Nasehpour, P., Yassemi, S.: $M$-cancellation ideals.Kyungpook Math. J. 40 (2000), 259–263. Zbl 1020.13002, MR 1803117
Reference: [20] Northcott, D.G.: A generalization of a theorem on the content of polynomials.Proc. Cambridge Philos. Soc. 55 (1959), 282–288. Zbl 0103.27102, MR 0110732
Reference: [21] Ohm, J., Rush, D.E.: Content modules and algebras.Math. Scand. 39 (1972), 49–68. Zbl 0248.13013, MR 0344289, 10.7146/math.scand.a-11411
Reference: [22] Prüfer, H.: Untersuchungen über Teilbarkeitseigenschaften in Körpern.J. Reine Angew. Math. 168 (1932), 1–36. Zbl 0004.34001, MR 1581355
Reference: [23] Rege, M.B., Chhawchharia, S.: Armendariz rings.Proc. Japan Acad. Ser. A Math. Sci. 168 (1) (1997), 14–17. Zbl 0960.16038, MR 1442245
Reference: [24] Rush, D.E.: Content algebras.Canad. Math. Bull. 21 (3) (1978), 329–334. Zbl 0441.13005, MR 0511581, 10.4153/CMB-1978-057-8
Reference: [25] Tsang, H.: Gauss’ Lemma.University of Chicago, Chicago, 1965, disseration. Zbl 0266.13007, MR 2611536
.

Files

Files Size Format View
ArchMathRetro_052-2016-2_1.pdf 558.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo