Previous |  Up |  Next

Article

Title: Remarks on $LBI$-subalgebras of $C(X)$ (English)
Author: Parsinia, Mehdi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 261-270
Summary lang: English
.
Category: math
.
Summary: Let $A(X)$ denote a subalgebra of $C(X)$ which is closed under local bounded inversion, briefly, an $LBI$-subalgebra. These subalgebras were first introduced and studied in Redlin L., Watson S., Structure spaces for rings of continuous functions with applications to realcompactifications, Fund. Math. 152 (1997), 151--163. By characterizing maximal ideals of $A(X)$, we generalize the notion of $z_A^\beta$-ideals, which was first introduced in Acharyya S.K., De D., An interesting class of ideals in subalgebras of $C(X)$ containing $C^*(X)$, Comment. Math. Univ. Carolin. 48 (2007), 273--280 for intermediate subalgebras, to the $LBI$-subalgebras. Using these, it is simply shown that the structure space of every $LBI$-subalgebra is homeomorphic with a quotient of $\beta X$. This gives a different approach to the results of Redlin L., Watson S., Structure spaces for rings of continuous functions with applications to realcompactifications, Fund. Math. 152 (1997), 151--163 and also shows that the Banaschewski-compactification of a zero-dimensional space $X$ is a quotient of $\beta X$. Finally, we consider the class of complete rings of functions which was first defined in Byun H.L., Redlin L., Watson S., Local invertibility in subrings of $C^*(X)$, Bull. Austral. Math. Soc. 46 (1992), 449--458. Showing that every such subring is an $LBI$-subalgebra, we prove that the compactification of $X$ associated to each complete ring of functions, which is identified in Byun H.L., Redlin L., Watson S., Local invertibility in subrings of $C^*(X)$, Bull. Austral. Math. Soc. 46 (1992), 449--458 via the mapping ${\mathcal Z}_A$, is in fact, the structure space of that subring. Henceforth, some statements in Byun H.L., Redlin L., Watson S., Local invertibility in subrings of $C^*(X)$, Bull. Austral. Math. Soc. 46 (1992), 449--458 could be proved in a different way. (English)
Keyword: local bounded inversion
Keyword: structure space
Keyword: $z_A^\beta$-ideal
Keyword: complete ring of functions
MSC: 46E25
MSC: 54C30
idZBL: Zbl 1363.54031
idMR: MR3513449
DOI: 10.14712/1213-7243.2015.158
.
Date available: 2016-07-05T15:13:54Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145750
.
Reference: [1] Acharyya S.K., De D.: $A$-compactness and minimal subalgebras of $C(X)$.Rocky Mountain J. Math. 35 (2005), no. 4, 1061–1067. MR 2178974, 10.1216/rmjm/1181069673
Reference: [2] Acharyya S.K., De D.: An interesting class of ideals in subalgebras of $C(X)$ containing $C^*(X)$.Comment. Math. Univ. Carolin. 48 (2007), 273–280. MR 2338095
Reference: [3] Bhattacharjee P., Knox M.L., McGovern W.W.: The classical ring of quotients of $C_c(X)$.Appl. Gen. Topol. 15 (2014), no. 2, 147–154. Zbl 1305.54030, MR 3267269, 10.4995/agt.2014.3181
Reference: [4] Byun H.L., Redlin L., Watson S.: Local bounded inversion in rings of continuous functions.Comment. Math. Univ. Carolin. 37 (1997), 37–46. Zbl 0903.54009, MR 1608229
Reference: [5] Byun H.L., Redlin L., Watson S.: Local invertibility in subrings of $C^*(X)$.Bull. Austral. Math. Soc. 46 (1992), 449–458. MR 1190348, 10.1017/S0004972700012119
Reference: [6] Byun H.L., Watson S.: Prime and maximal ideals in subrings of $C(X)$.Topology Appl. 40 (1991), 45–62. Zbl 0732.54016, MR 1114090, 10.1016/0166-8641(91)90057-S
Reference: [7] De D., Acharyya S.K.: Characterization of function rings between $C^*(X)$ and $C(X)$.Kyungpook Math. J. 40 (2006), 503–507. MR 2282652
Reference: [8] Ghadermazi M., Karamzadeh O.A.S., Namdari M.: On the functionally countable subalgebra of $C(X)$.Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. Zbl 1279.54015, MR 3090630, 10.4171/RSMUP/129-4
Reference: [9] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1978. Zbl 0327.46040, MR 0407579
Reference: [10] Henriksen M., Johnson D.G.: On the struture of a class of archimedean lattice-ordered algebras.Fund. Math. 50 (1961), 73–94. MR 0133698, 10.4064/fm-50-1-73-94
Reference: [11] Johnson D.G., Mandelker M.: Functions with pseudocompact support.General Topology Appl. 3 (1973), 331–338. Zbl 0277.54009, MR 0331310, 10.1016/0016-660X(73)90020-2
Reference: [12] Koushesh M.R.: The partially ordered set of one-point extensions.Topology Appl. 158 (2011), 509–532. Zbl 1216.54007, MR 2754374, 10.1016/j.topol.2010.12.001
Reference: [13] Plank D.: On a class of subalgebras of $C(X)$ with applications to $\beta X-X$.Fund. Math. 64 (1969), 41–54. MR 0244953, 10.4064/fm-64-1-41-54
Reference: [14] Redlin H., Watson S.: Maximal ideals in subalgebras of $C(X)$.Proc. Amer. Math. Soc. 100 (1987), 763–766. Zbl 0622.54011, MR 0894451
Reference: [15] Redlin L., Watson S.: Structure spaces for rings of continuous functions with applications to realcompactifications.Fund. Math. 152 (1997), 151–163. Zbl 0877.54015, MR 1441231
Reference: [16] Rudd D.: On isomorphism between ideals in rings of continuous functions.Trans. Amer. Math. Soc. 159 (1971), 335–353. MR 0283575, 10.1090/S0002-9947-1971-0283575-1
Reference: [17] Rudd D.: On structure spaces of ideals in rings of continuous functions.Trans. Amer. Math. Soc. 190 (1974), 393–403. Zbl 0288.46025, MR 0350690, 10.1090/S0002-9947-1974-0350690-6
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_10.pdf 284.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo