Previous |  Up |  Next

Article

Title: On the potential theory of some systems of coupled PDEs (English)
Author: Aslimani, Abderrahim
Author: El Ghazi, Imad
Author: El Kadiri, Mohamed
Author: Haddad, Sabah
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 135-154
Summary lang: English
.
Category: math
.
Summary: In this paper we study some potential theoretical properties of solutions and super-solutions of some PDE systems (S) of type $L_1u =-\mu_1v$, $L_2v =-\mu_2u$, on a domain $D$ of $\mathbb R^d$, where $\mu_1$ and $\mu_2$ are suitable measures on $D$, and $L_1$, $L_2$ are two second order linear differential elliptic operators on $D$ with coefficients of class $\mathcal C^\infty$. We also obtain the integral representation of the nonnegative solutions and supersolutions of the system (S) by means of the Green kernels and Martin boundaries associated with $L_1$ and $L_2$, and a convergence property for increasing sequences of solutions of (S). (English)
Keyword: harmonic function
Keyword: superharmonic function
Keyword: potential
Keyword: elliptic linear differential operator
Keyword: kernel
Keyword: coupled PDEs system
Keyword: Kato measure
MSC: 31B05
MSC: 31B10
MSC: 31B35
idZBL: Zbl 1363.31004
idMR: MR3513440
DOI: 10.14712/1213-7243.2015.165
.
Date available: 2016-07-05T15:01:29Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145751
.
Reference: [1] Armitage D.H., Gardiner S.J.: Classical Potential Theory.Springer, London, 2001. Zbl 0972.31001, MR 1801253
Reference: [2] Bliedtner J., Hansen W.: Potential theory. An analytic and probabilistic approach to balayage.Universitext, Springer, Berlin, 1986. Zbl 0706.31001, MR 0850715
Reference: [3] Boboc N., Bucur Gh.: Perturbations in excessive structures.Complex analysis–fifth Romanian-Finnish seminar, Part 2 (Bucharest, 1981), Lecture Notes in Math., 1014, Springer, Berlin, 1983, pp. 155–187. Zbl 0534.47008, MR 0738120
Reference: [4] Bouleau N.: Semi-groupe triangulaire associé à un espace biharmonique.C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 7, A415–A417. Zbl 0405.31009, MR 0552066
Reference: [5] Bouleau N.: Couplage de deux semi-groupes droites.C.R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 8, A465–A467. MR 0527698
Reference: [6] Bouleau N.: Espaces biharmoniques et couplage de processus de Markov.J. Math. Pures Appl. (9) 59 (1980), no. 2, 187–240. Zbl 0403.60068, MR 0581988
Reference: [7] Bouleau N.: Théorie du potentiel associée à certains systèmes différentiels.Math. Ann. 255 (1981), no. 3, 335–350. Zbl 0441.31006, MR 0615854, 10.1007/BF01450707
Reference: [8] Brelot M.: Axiomatique des fonctions harmoniques.Université de Montréal, 1966. Zbl 0148.10401, MR 0247124
Reference: [9] Chen Z.Q., Zhao Z.: Potential theory for elliptic systems.Ann. Probab. 24 (1996), no. 1, 293–319. Zbl 0854.60062, MR 1387637, 10.1214/aop/1042644718
Reference: [10] Constantinescu C.A., Cornea A.: Potential Theory on Harmonic Spaces.Springer, New York-Heidelberg, 1972. Zbl 0248.31011, MR 0419799
Reference: [11] Doob J.L: Classical Potential Theory and its Probabilistic Counterpart.Springer, New York, 1984. Zbl 0990.31001, MR 0731258
Reference: [12] El Kadiri M.: Sur la représentation intégrale en théorie axiomatique des fonctions biharmoniques.Rev. Roumaine Math. Pures Appl. 42 (1997), no. 7–8, 579–589. Zbl 1089.31501, MR 1650389
Reference: [13] El Kadiri M.: Frontière de Martin biharmonique et représentation intégrale des fonctions biharmoniques.Positivity 6 (2002), 129–145. Zbl 0998.31004, MR 1905385, 10.1023/A:1015283920365
Reference: [14] El Kadiri M., Haddad S.: Comportement des fonctions bisurharmoniques et problème de Riquier fin à la frontière de Martin biharmonique.Algebras Groups Geom. 24 (2007), 155–186. Zbl 1148.31007, MR 2345849
Reference: [15] Gazzola F., Sweers G.: On positivity for the biharmonic operator under Steklov boundary conditions.Arch. Ration. Mech. Anal. 188 (2008), no. 3, 399–427. Zbl 1155.35019, MR 2393435, 10.1007/s00205-007-0090-4
Reference: [16] Gazzola F., Grunau H.-C., Sweers G.: Polyharmonic boundary value problems. Positivity preserving and nonlinear higher order elliptic equations in bounded domains.Lecture Notes in Mathematics, 1991, Springer, Berlin, 2010. Zbl 1239.35002, MR 2667016
Reference: [17] Grunau H.-C., Sweers G.: Positivity properties of elliptic boundary value problems of higher order.Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996), Nonlinear Anal. 30 (1997), no. 8, 5251–5258. Zbl 0894.35016, MR 1726027
Reference: [18] Grunau H-C., Sweers G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions.Math. Ann. 307 (1997), no. 4, 589–626. Zbl 0892.35031, MR 1464133, 10.1007/s002080050052
Reference: [19] Hansen W.: Harnack inequalities for Schrödinger operators.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 3, 413–470. Zbl 0940.35063, MR 1736524
Reference: [20] Hansen W.: Modification of balayage spaces by transitions with application to coupling of PDE's.Nagoya Math. J. 169 (2003), 77–118. Zbl 1094.31005, MR 1962524, 10.1017/S002776300000845X
Reference: [21] Helms L.L.: Introduction to Potential Theory.Pure and Applied Mathematics, Vol. XXII, Wiley-Interscience A Division of John Wiley and Sons, New York-London-Sydney, 1969. Zbl 0188.17203, MR 0261018
Reference: [22] Hervé R.-M.: Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel.Ann. Inst. Fourier (Grenoble) 12 (1962), 415–571. Zbl 0101.08103, MR 0139756, 10.5802/aif.125
Reference: [23] Janssen K.: On the Martin boundary of weakly coupled balayage spaces.Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5–6, 655–664. Zbl 1120.31005, MR 2320915
Reference: [24] Mokobodzki G.: Représentation intégrale des fonctions surharmoniques au moyen des réduites.Ann. Inst. Fourier (Grenoble) 15 (1965), fasc. 1, 103–112. Zbl 0134.09502, MR 0196110, 10.5802/aif.199
Reference: [25] Smyrnélis E.P.: Axiomatique des fonctions biharmoniques. I..Ann. Inst. Fourier (Grenoble) 25 (1975), no. 1, 35–97. Zbl 0295.31006, MR 0382691, 10.5802/aif.544
Reference: [26] Smyrnélis E.P.: Axiomatique des fonctions biharmoniques. II..Ann. Inst. Fourier (Grenoble) 26 (1976), no. 3., 1–47. Zbl 0325.31020, MR 0477101, 10.5802/aif.624
Reference: [27] Sweers G.: Positivity for a strongly coupled elliptic system by Green function estimates.J. Geom. Anal. 4 (1994), no. 1, 121–142. Zbl 0792.35048, MR 1274141, 10.1007/BF02921596
Reference: [28] Sweers G.: Strong positivity in $C(\overline\Omega)$ for elliptic systems.Math. Z. 209 (1992), no. 2, 251–271. MR 1147817, 10.1007/BF02570833
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_1.pdf 350.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo