Previous |  Up |  Next

Article

Title: Geometry of the rolling ellipsoid (English)
Author: Krakowski, Krzysztof Andrzej
Author: Silva Leite, Fátima
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 2
Year: 2016
Pages: 209-223
Summary lang: English
.
Category: math
.
Summary: We study rolling maps of the Euclidean ellipsoid, rolling upon its affine tangent space at a point. Driven by the geometry of rolling maps, we find a simple formula for the angular velocity of the rolling ellipsoid along any piecewise smooth curve in terms of the Gauss map. This result is then generalised to rolling any smooth hyper-surface. On the way, we derive a formula for the Gaussian curvature of an ellipsoid which has an elementary proof and has been previously known only for dimension two. (English)
Keyword: ellipsoid
Keyword: rolling maps
Keyword: Gaussian curvature
Keyword: geodesics
Keyword: hypersurface
MSC: 35B06
MSC: 53A05
MSC: 53B21
MSC: 58E10
MSC: 70B10
idZBL: Zbl 1374.53033
idMR: MR3501158
DOI: 10.14736/kyb-2016-2-0209
.
Date available: 2016-07-17T12:01:19Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145771
.
Related article: http://dml.cz/handle/10338.dmlcz/146744
.
Reference: [1] Bicchi, A., Sorrentino, R., Piaggio, C.: Dexterous manipulation through rolling..In: ICRA'95, IEEE Int. Conf. on Robotics and Automation 1995, pp. 452-457. 10.1109/robot.1995.525325
Reference: [2] Borisov, A. V., Mamaev, I. S.: Isomorphism and Hamilton representation of some nonholonomic systems..Sibirsk. Mat. Zh. 48 (2007), 1, 33-45. Zbl 1164.37342, MR 2304876, 10.1007/s11202-007-0004-6
Reference: [3] Borisov, A. V., Mamaev, I. S.: Rolling of a non-homogeneous ball over a sphere without slipping and twisting..Regular and Chaotic Dynamics 12 (2007), 2, 153-159. Zbl 1229.37081, MR 2350303, 10.1134/s1560354707020037
Reference: [4] Borisov, A. V., Mamaev, I. S.: Isomorphisms of geodesic flows on quadrics..Regular and Chaotic Dynamics 14 (2009), 4 - 5, 455-465. Zbl 1229.37096, MR 2551869, 10.1134/s1560354709040030
Reference: [5] Caseiro, R., Martins, P., Henriques, J. F., Leite, F. Silva, Batista, J.: Rolling Riemannian manifolds to solve the multi-class classification problem..In: CVPR 2013, pp. 41-48. 10.1109/cvpr.2013.13
Reference: [6] Chavel, I.: Riemannian Geometry - A Modern Introduction. Second edition..Cambridge Studies in Advanced Mathematics, No. 98. Cambridge University Press, Cambridge 2006. MR 2229062, 10.1017/cbo9780511616822
Reference: [7] Crouch, P., Leite, F. Silva: Rolling maps for pseudo-Riemannian manifolds..In: Proc. 51th IEEE Conference on Decision and Control, (Hawaii 2012). 10.1109/cdc.2012.6426140
Reference: [8] Fedorov, Y. N., Jovanović, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces..J. Nonlinear Science 14 (2004), 4, 341-381. Zbl 1125.37045, MR 2076030, 10.1007/s00332-004-0603-3
Reference: [9] Hüper, K., Krakowski., K. A., Leite, F. Silva: Rolling Maps in a Riemannian Framework..Textos de Matemática 43, Department of Mathematics, University of Coimbra 2011, pp. 15-30. MR 2894254
Reference: [10] Hüper, K., Leite, F. Silva: On the geometry of rolling and interpolation curves on $S^n$, $SO_n$ and Graßmann manifolds..J. Dynam. Control Systems 13 (2007), 4, 467-502. MR 2350231, 10.1007/s10883-007-9027-3
Reference: [11] Prete, N. M. Justin Carpentier J.-P. L. Andrea Del: An analytical model of rolling contact and its application to the modeling of bipedal locomotion..In: Proc. IMA Conference on Mathematics of Robotics 2015, pp. 452-457.
Reference: [12] Kato, T.: Perturbation Theory for Linear Operators..Springer-Verlag, Classics in Mathematics 132, 1995. Zbl 0836.47009, MR 1335452, 10.1007/978-3-642-66282-9
Reference: [13] Knörrer, H.: Geodesics on the ellipsoid..Inventiones Mathematicae 59 (1980), 119-144. Zbl 0431.53003, MR 0577358, 10.1007/bf01390041
Reference: [14] Knörrer, H.: Geodesics on quadrics and a mechanical problem of C. Neumann..J. für die reine und angewandte Mathematik 334 (1982), 69-78. MR 0667450, 10.1515/crll.1982.334.69
Reference: [15] Korolko, A., Leite, F. Silva: Kinematics for rolling a Lorentzian sphere..In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference (IEEE CDC-ECC 2011), Orlando 2011, pp. 6522-6528. 10.1109/cdc.2011.6160592
Reference: [16] Krakowski, K., Leite, F. Silva: An algorithm based on rolling to generate smooth interpolating curves on ellipsoids..Kybernetika 50 (2014), 4, 544-562. MR 3275084, 10.14736/kyb-2014-4-0544
Reference: [17] Krakowski, K. A., Leite, F. Silva: Why controllability of rolling may fail: a few illustrative examples..In: Pré-Publicações do Departamento de Matemática, no. 12-26. University of Coimbra 2012, pp. 1-30.
Reference: [18] Lee, J. M., J: Riemannian Manifolds: An Introduction to Curvature..Springer-Verlag, Graduate Texts in Mathematics 176, New York 1997. MR 1468735
Reference: [19] Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations..Advances Math. 16 (1975), 2, 197-220. Zbl 0303.34019, MR 0375869, 10.1016/0001-8708(75)90151-6
Reference: [20] Moser, J.: Geometry of quadrics and spectral theory..In: The Chern Symposium 1979 (W.-Y. Hsiang, S. Kobayashi, I. Singer, J. Wolf, H.-H. Wu, and A. Weinstein, eds.), Springer, New York 1980, pp. 147-188. Zbl 0455.58018, MR 0609560, 10.1007/978-1-4613-8109-9_7
Reference: [21] Nomizu, K.: Kinematics and differential geometry of submanifolds..Tôhoku Math. J. 30 (1978), 623-637. Zbl 0395.53005, MR 0516894, 10.2748/tmj/1178229921
Reference: [22] Okamura, A. M., Smaby, N., Cutkosky, M. R.: An overview of dexterous manipulation..In: ICRA'00, IEEE Int Conf. on Robotics and Automation 2000, pp. 255–262. DOI:10.1109/robot.2000.844067 10.1109/robot.2000.844067
Reference: [23] Raţiu, T.: The C. Neumann problem as a completely integrable system on an adjoint orbit..Trans. Amer. Math. Soc. 264 (1981), 2, 321-329. Zbl 0475.58006, MR 0603766, 10.1090/s0002-9947-1981-0603766-3
Reference: [24] Sharpe, R. W.: Differential Geometry: Cartan's Generalization of Klein's Erlangen Program..Springer-Verlag, Graduate Texts in Mathematics 166, New York 1997. Zbl 0876.53001, MR 1453120
Reference: [25] Leite, F. Silva, Krakowski, K. A.: Covariant differentiation under rolling maps..In: Pré-Publicações do Departamento de Matemática, No. 08-22, University of Coimbra 2008, pp. 1-8.
Reference: [26] Spivak, M.: Calculus on Manifolds..Mathematics Monograph Series, Addison-Wesley, New York 1965. Zbl 0381.58003
Reference: [27] Uhlenbeck, K.: Minimal 2-spheres and tori in $S^k$..Preprint, 1975.
Reference: [28] Veselov, A. P.: A few things I learnt from Jürgen Moser..Regular and Chaotic Dynamics 13 (2008), 6, 515-524. Zbl 1229.37076, MR 2465721, 10.1134/s1560354708060038
Reference: [29] Weintrit, A., Neumann, T., eds.: Methods and Algorithms in Navigation: Marine Navigation and Safety of Sea Transportation..CRC Press, 2011. 10.1201/b11344
.

Files

Files Size Format View
Kybernetika_52-2016-2_2.pdf 747.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo