Previous |  Up |  Next

Article

Title: Maximal inequalities and some convergence theorems for fuzzy random variables (English)
Author: Ahmadzade, Hamed
Author: Amini, Mohammad
Author: Taheri, Seyed Mahmoud
Author: Bozorgnia, Abolghasem
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 2
Year: 2016
Pages: 307-328
Summary lang: English
.
Category: math
.
Summary: Some maximal inequalities for quadratic forms of independent and linearly negative quadrant dependent fuzzy random variables are established. Strong convergence of such quadratic forms are proved based on the martingale theory. A weak law of large numbers for linearly negative quadrant dependent fuzzy random variables is stated and proved. (English)
Keyword: fuzzy random variable
Keyword: quadratic form
Keyword: linearly negative quadrant dependence
Keyword: law of large numbers
Keyword: almost surely convergence
MSC: 60F05
MSC: 60F15
idZBL: Zbl 1374.60014
idMR: MR3501164
DOI: 10.14736/kyb-2016-2-0307
.
Date available: 2016-07-17T12:09:41Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145777
.
Reference: [1] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some limit theorems for independent fuzzy random variables..Thaiwan J. Math. 12 (2014), 537-548. Zbl 1328.60081, MR 3291684
Reference: [2] Ahmadzade, H., Amini, M., Taheri, S. M., Bozorgnia, A.: Some moment inequalities for fuzzy martingales and their applications..J. Uncertainty Anal. Appl. 2 (2014), 1-14. 10.1186/2195-5468-2-7
Reference: [3] Aumann, R. J.: Integrals of set-valued functions..J. Math. Anal. Appl. 12 (1965), 1-12. Zbl 0163.06301, MR 0185073, 10.1016/0022-247x(65)90049-1
Reference: [4] Cuzich, J., Gine, E., Zinn, J.: Laws of large numbers for quadratic forms, maxima of products and truncated sums of i.i.d. random variables..Ann. Probab. 23 (1995), 292-333. MR 1330772, 10.1214/aop/1176988388
Reference: [5] Eghbal, N., Amini, M., Bozorgnia, A.: Some maximal inequalities for quadratic forms of negative superadditive dependence random variables..Stat. Probab. Lett. 80 (2010), 587-591. Zbl 1187.60020, MR 2595134, 10.1016/j.spl.2009.12.014
Reference: [6] Eghbal, N., Amini, M., Bozorgnia, A.: On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables..Stat. Probab. Lett. 81 (2011), 1112-1120. Zbl 1228.60039, MR 2803752, 10.1016/j.spl.2011.03.005
Reference: [7] Fei, W.: Regularity and stopping theorem for fuzzy martingales with continuous parameters..Inform. Sci. 169 (2005), 175-87. Zbl 1092.60019, MR 2114098, 10.1016/j.ins.2004.02.011
Reference: [8] Fei, W., Wu, R., Shao, S.: Doobs stopping theorem for fuzzy (super, sub) martingales with discrete time..Fuzzy Set. Syst. 135 (2003), 377-390. Zbl 1020.60035, MR 1979606, 10.1016/s0165-0114(02)00213-0
Reference: [9] Feng, Y.: Convergence theorems for fuzzy random variables and fuzzy martingales..Fuzzy Set. Syst. 103 (1999), 435-441. Zbl 0939.60027, MR 1669281, 10.1016/s0165-0114(97)00180-2
Reference: [10] Feng, Y.: An approach to generalize laws of large numbers for fuzzy random variables..Fuzzy Set. Syst. 128 (2002), 237-245. Zbl 1009.60020, MR 1908429, 10.1016/s0165-0114(01)00142-7
Reference: [11] Feng, Y., Hu, L., Shu, H.: The variance and covariance of fuzzy random variables and their applications..Fuzzy Set. Syst. 120 (2001), 487-497. Zbl 0984.60029, MR 1829266
Reference: [12] Fu, Y., Wu, Q.: Almost sure central limit theoremfor LNQD sequences..J. Guilin University of Technology 30 (2010), 4, 637-639. 10.1016/j.ins.2008.01.005
Reference: [13] Fu, K., Zhang, L.-X.: Strong limit theorems for random sets and fuzzy random sets with slowly varying weights..Inform. Sci. 178 (2008), 2648-2660. Zbl 1176.60020, MR 2414803, 10.1016/j.ins.2008.01.005
Reference: [14] Gadidov, A.: Strong law of large numbers for multilinear forms..Ann. Probab. 26 (1998), 902-923. Zbl 0937.60016, MR 1626539, 10.1214/aop/1022855655
Reference: [15] Gut, A.: Probability: A Graduate Course..Springer, New York 2005. Zbl 1267.60001, MR 2125120, 10.1007/b138932
Reference: [16] Hoeffding, W.: Masstabinvariante Korrelationstheorie..Schriften des Matematischen Instituts und des Instituts fur Angewandte Mathematik der Universitat 1940.
Reference: [17] Hong, D.: A convergence of fuzzy random variables..Kybernetika 39 (2003), 275-280. Zbl 1249.60007, MR 1995730
Reference: [18] Hong, D., Kim, K.: Weak law of large number for i.i.d. fuzzy random variables..Kybernetika 43 (2007), 87-96. MR 2343333
Reference: [19] Joo, S. Y., Kim, Y. K., Kwon, J S.: On Chung's type law of large numbers for fuzzy random variables..Stat. Prob. Lett. 74 (2005), 67-75. Zbl 1082.60022, MR 2189077, 10.1016/j.spl.2005.04.030
Reference: [20] Klement, E. P., Puri, M. L., Ralescu, D. A.: Limit theorems for fuzzy random variables.Proc. Roy. Soc. London Ser. A 407 (1986), 171-182. Zbl 0605.60038, MR 0861082, 10.1098/rspa.1986.0091
Reference: [21] Ko, M. H., Choi, Y. K., Choi, Y.-S.: Exponential probability inequality for linearly negative quadrant dependent random variables..Korean Math. Soc. Comm. 22 (2007), 1, 137-143. Zbl 1168.60336, MR 2286902, 10.4134/ckms.2007.22.1.137
Reference: [22] Korner, R.: On the variance of fuzzy random variables..Fuzzy Set. Syst. 92 (1997), 83-93. Zbl 0936.60017, MR 1481018, 10.1016/s0165-0114(96)00169-8
Reference: [23] Kwakernaak, H.: Fuzzy random variables I. Zbl 0438.60004
Reference: [24] Miranda, E., Couso, I., Gil, P.: Random sets as imprecise random variables..J. Math. Anal. Appl. 307 (2005), 32-47. Zbl 1077.60011, MR 2138973, 10.1016/j.jmaa.2004.10.022
Reference: [25] Miyakoshi, M., Shimbo, M.: A strong law of large numbers for fuzzy random variables..Fuzzy Set. Syst. 12 (1984), 133-142. Zbl 0551.60035, MR 0734945, 10.1016/0165-0114(84)90033-2
Reference: [26] Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis..SIAM, Philadelphia 2009. Zbl 1168.65002, MR 2482682, 10.1137/1.9780898717716
Reference: [27] Newman, C. M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables..Statist. Probab. 5 (1984), 127-140. MR 0789244, 10.1214/lnms/1215465639
Reference: [28] Nguyen, H. T.: A note on the extension principle for fuzzy sets..J. Math. Anal. Appl. 64 (1978), 369-380. Zbl 0377.04004, MR 0480044, 10.1016/0022-247x(78)90045-8
Reference: [29] Parchami, A., Mashinchi, M., Partovinia, V.: A consistent confidence interval for fuzzy capability index..Appl. Comput. Math. 7 (2008), 119-125. MR 2423023
Reference: [30] Puri, M. L., Ralescu, D. A.: Fuzzy random variables..J. Math. Anal. Appl. 114 (1986), 402-422. Zbl 0605.60038, MR 0833596, 10.1515/9783110917833.452
Reference: [31] Puri, M. L., Ralescu, D. A.: Convergence theorem for fuzzy martingales..J. Math. Anal. Appl. 160 (1991), 107-122. Zbl 0737.60005, MR 1124080, 10.1016/0022-247x(91)90293-9
Reference: [32] Ralescu, D. A.: Fuzzy random variables revisited..In: Math. Fuzzy Sets, Handbook Fuzzy Sets, Series 3 Kluwer, Boston 1999, pp. 701-710. Zbl 0971.60037, MR 1788914, 10.1007/978-1-4615-5079-2_16
Reference: [33] Sadeghpour-Gildeh, B., Gien, D.: La distance-$D_{p,q}$ et le coeffcient de corrélation entre deux variables aléatoires floues..Actes de LFA'01, Monse-Belgium 2001, pp. 97-102.
Reference: [34] Shanchao, Y.: Moment inequalities for sums of products of independent random variables..Stat. Probab. Lett. 76 (2006), 1994-2000. Zbl 1107.60307, MR 2329244, 10.1016/j.spl.2006.05.004
Reference: [35] Stojakovic, M.: Fuzzy martingalesa simple form of fuzzy processes..Stochast. Anal. Appl. 14 (1996), 3, 355-367. MR 1393929, 10.1080/07362999608809443
Reference: [36] Taylor, R. L., Seymour, L., Chen, Y.: Weak laws of large numbers for fuzzy random sets..Nonlinear Anal. 47 (2001), 1245-125. Zbl 1042.60502, MR 1970734, 10.1016/s0362-546x(01)00262-0
Reference: [37] Viertl, R.: Statistical Methods for Fuzzy Data..John Wiley, Chichester 2011. Zbl 1101.62003, MR 2759969, 10.1002/9780470974414
Reference: [38] Wang, J., Wu, Q.: Limiting behavior of the maximum of the partial sum for linearly negative quadrant dependent random variables under residual Ces` aro alpha-integrability assumption..J. Appl. Math. 2012 (2012), 1-10. MR 2898064, 10.1155/2012/735973
Reference: [39] Wang, J. F., Zhang, L. X.: A Berry-Esseen theorem for weakly negatively dependent random variables and its applications..Acta Math. Hungar. 110 (2006), 4, 293-308. Zbl 1121.60024, MR 2213231, 10.1007/s10474-006-0024-x
Reference: [40] Wu, H. C.: The laws of large numbers for fuzzy random variables..Fuzzy Sets Systems 116 (2000), 245-262. Zbl 0971.60035, MR 1788396, 10.1016/s0165-0114(98)00414-x
Reference: [41] Zhang, C. H.: Strong law of large numbers for sums of products..Ann. Probab. 24 (1996), 1589-1615. Zbl 0868.60024, MR 1411507, 10.1214/aop/1065725194
.

Files

Files Size Format View
Kybernetika_52-2016-2_8.pdf 429.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo