Previous |  Up |  Next

Article

Title: On stable cones of polynomials via reduced Routh parameters (English)
Author: Nurges, Ülo
Author: Belikov, Juri
Author: Artemchuk, Igor
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 3
Year: 2016
Pages: 461-477
Summary lang: English
.
Category: math
.
Summary: A problem of inner convex approximation of a stability domain for continuous-time linear systems is addressed in the paper. A constructive procedure for generating stable cones in the polynomial coefficient space is explained. The main idea is based on a construction of so-called Routh stable line segments (half-lines) starting from a given stable point. These lines (Routh rays) represent edges of the corresponding Routh subcones that form (possibly after truncation) a polyhedral (truncated) Routh cone. An algorithm for approximating a stability domain by the Routh cone is presented. (English)
Keyword: linear systems
Keyword: Hurwitz stability
Keyword: convex approximation
MSC: 93C05
MSC: 93D09
idZBL: Zbl 06644305
idMR: MR3532517
DOI: 10.14736/kyb-2016-3-0461
.
Date available: 2016-07-17T12:19:47Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145786
.
Reference: [1] Ackermann, J., Kaesbauer, D.: Stable polyhedra in parameter space..Automatica 39 (2003), 937-943. Zbl 1022.93016, MR 2138367, 10.1016/s0005-1098(03)00034-7
Reference: [2] Artemchuk, I., Nurges, Ü., Belikov, J.: Robust pole assignment via Routh rays of polynomials..In: American Control Conference, Boston 2016, pp. 7031-7036.
Reference: [3] Artemchuk, I., Nurges, Ü., Belikov, J., Kaparin, V.: Stable cones of polynomials via Routh rays..In: 20th International Conference on Process Control, Štrbské Pleso 2015, pp. 255-260. 10.1109/pc.2015.7169972
Reference: [4] Bhattacharyya, S. P., Chapellat, H., Keel, L. H.: Robust Control: The Parametric Approach..Prentice Hall, Upper Saddle River, New Jersy 1995. Zbl 0838.93008
Reference: [5] Calafiore, G., ElGhaoui, L.: Ellipsoidal bounds for uncertain linear equations and dynamical systems..Automatica 40 (2004), 773-787. MR 2152184, 10.1016/j.automatica.2004.01.001
Reference: [6] Chapellat, H., Mansour, M., Bhattacharyya, S. P.: Elementary proofs of some classical stability criteria..Trans. Ed. 33 (1990), 232-239. 10.1109/13.57067
Reference: [7] Gantmacher, F. R.: The Theory of Matrices..Chelsea Publishing Company, New York 1959. Zbl 0927.15002, MR 0107649, 10.1126/science.131.3408.1216-a
Reference: [8] Greiner, R.: Necessary conditions for Schur-stability of interval polynomials..Trans. Automat. Control 49 (2004), 740-744. MR 2057807, 10.1109/tac.2004.825963
Reference: [9] Henrion, D., Peaucelle, D., Arzelier, D., Šebek, M.: Ellipsoidal approximation of the stability domain of a polynomial..Trans. Automat. Control 48 (2003), 2255-2259. MR 2027255, 10.1109/tac.2003.820161
Reference: [10] Hinrichsen, D., Kharitonov, V. L.: Stability of polynomials with conic uncertainty..Math. Control Signals Systems 8 (1995), 97-117. Zbl 0856.93077, MR 1371080, 10.1007/bf01210203
Reference: [11] Jetto, L.: Strong stabilization over polytopes..Trans. Automat. Control 44 (1999), 1211-1216. Zbl 0955.93025, MR 1689136, 10.1109/9.769376
Reference: [12] Kharitonov, V. L.: Asymptotic stability of an equilibrium position of a family of systems of linear differential equations..Differ. Equations 14 (1979), 1483-1485. Zbl 0409.34043, MR 0516709
Reference: [13] Nise, N. S.: Control Systems Engineering..John Wiley and Sons, Jefferson City 2010.
Reference: [14] Nurges, Ü.: New stability conditions via reflection coefficients of polynomials..Trans. Automat. Control 50 (2005), 1354-1360. MR 2164434, 10.1109/tac.2005.854614
Reference: [15] Nurges, Ü., Avanessov, S.: Fixed-order stabilising controller design by a mixed randomised/deterministic method..Int. J. Control 88 (2015), 335-346. Zbl 1328.93228, MR 3293574, 10.1080/00207179.2014.953208
Reference: [16] Nurges, Ü., Artemchuk, I., Belikov, J.: Generation of stable polytopes of Hurwitz polynomials via Routh parameters..In: 53rd IEEE Conference on Decision and Control, Los Angeles 2014, pp. 2390-2395. 10.1109/cdc.2014.7039753
Reference: [17] Parmar, G., Mukherjee, S., Prasad, R.: System reduction using factor division algorithm and eigen spectrum analysis..Appl. Math. Model. 31 (2007), 2542-2552. Zbl 1118.93028, 10.1016/j.apm.2006.10.004
Reference: [18] Rahman, Q. I., Schmeisser, G.: Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties..Oxford University Press, London 2002. MR 1954841
Reference: [19] Rantzer, A.: Stability conditions for polytopes of polynomials..Trans. Autom. Control 37 (1992), 79-89. Zbl 0747.93064, MR 1139617, 10.1109/9.109640
Reference: [20] Shcherbakov, P., Dabbene, F.: On the Generation of Random Stable Polynomials..Eur. J. Control 17 (2011), 145-159. Zbl 1227.65008, MR 2839112, 10.3166/ejc.17.145-159
Reference: [21] Tsoi, A. C.: Inverse Routh-Hurwitz array solution to the inverse stability problem..Electron. Lett. 15 (1979), 575-576. 10.1049/el:19790413
Reference: [22] Verriest, E. I., Michiels, W.: Inverse Routh table construction and stability of delay equations..Systems Control Lett. 55 (2006), 711-718. Zbl 1100.93040, MR 2245443, 10.1016/j.sysconle.2006.02.002
Reference: [23] Zadeh, L. A., Desoer, C. A.: Linear System Theory: The State Space Approach..MacGraw-Hill, New York 1963. Zbl 1153.93302
.

Files

Files Size Format View
Kybernetika_52-2016-3_8.pdf 346.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo