Previous |  Up |  Next

Article

Title: Toeplitz Quantization for Non-commutating Symbol Spaces such as $SU_q(2)$ (English)
Author: Sontz, Stephen Bruce
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 1
Year: 2016
Pages: 43-69
Summary lang: English
.
Category: math
.
Summary: Toeplitz quantization is defined in a general setting in which the symbols are the elements of a possibly non-commutative algebra with a conjugation and a possibly degenerate inner product. We show that the quantum group $SU_q(2)$ is such an algebra. Unlike many quantization schemes, this Toeplitz quantization does not require a measure. The theory is based on the mathematical structures defined and studied in several recent papers of the author; those papers dealt with some specific examples of this new Toeplitz quantization. Annihilation and creation operators are defined as densely defined Toeplitz operators acting in a quantum Hilbert space, and their commutation relations are discussed. At this point Planck's constant is introduced into the theory. Due to the possibility of non-commuting symbols, there are now two definitions for anti-Wick quantization; these two definitions are equivalent in the commutative case. The Toeplitz quantization introduced here satisfies one of these definitions, but not necessarily the other. This theory should be considered as a second quantization, since it quantizes non-commutative (that is, already quantum) objects. The quantization theory presented here has two essential features of a physically useful quantization: Planck's constant and a Hilbert space where natural, densely defined operators act. (English)
Keyword: Toeplitz quantization
Keyword: non-commutating symbols
Keyword: creation and annihilation operators
Keyword: canonical commutation relations
Keyword: anti-Wick quantization
Keyword: second quantization of a quantum group
MSC: 47B35
MSC: 81S99
idZBL: Zbl 1369.47037
idMR: MR3546806
.
Date available: 2016-08-26T11:21:15Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145805
.
Reference: [1] Ali, S.T., Englis, M.: Berezin-Toeplitz quantization over matrix domains.Contributions in Mathematical Physics: A Tribute to Gerard G. Emch, Eds. S.T. Ali and K.B. Sinha, 2007, -, Hindustan Book Agency, New Delhi, India, arXiv: math-ph/0602015. MR 2423653
Reference: [2] Ali, S.T., Englis, M.: Matrix-valued Berezin-Toeplitz quantization.J. Math. Phys., 48, 5, 2007, 053504, (14 pages). arXiv: math-ph/0611082. Zbl 1144.81305, MR 2329866
Reference: [3] Bargmann, V.: On a Hilbert space of analytic functions and its associated integral transform, Part I.Commun. Pure Appl. Math., 14, 3, 1961, 187-214, MR 0157250, 10.1002/cpa.3160140303
Reference: [4] Baz, M. El, Fresneda, R., Gazeau, J.-P., Hassouni, Y.: Coherent state quantization of paragrassmann algebras.J. Phys. A: Math. Theor., 43, 38, 2010, 385202 (15pp). Also see the Erratum for this article in arXiv:1004.4706v3. Zbl 1198.81124, MR 2718322
Reference: [5] Berezin, F.A.: General Concept of Quantization.Commun. Math. Phys., 40, 1975, 153-174, Springer, Zbl 1272.53082, MR 0411452, 10.1007/BF01609397
Reference: [6] Berger, C.A., Coburn, L.A.: Toeplitz operators and quantum mechanics.J. Funct. Anal., 68, 1986, 273-299, Zbl 0629.47022, MR 0859136, 10.1016/0022-1236(86)90099-6
Reference: [7] Berger, C.A., Coburn, L.A.: Toeplitz operators on the Segal-Bargmann space.Trans. Am. Math. Soc., 301, 1987, 813-829, Zbl 0625.47019, MR 0882716, 10.1090/S0002-9947-1987-0882716-4
Reference: [8] Borthwick, D., Klimek, S., Lesniewski, A., Rinaldi, M.: Matrix Cartan superdomains, super Toeplitz operators, and quantization.J. Funct. Anal., 127, 1995, 456-510, arXiv: hep-th/9406050. Zbl 0834.58008, MR 1317726, 10.1006/jfan.1995.1020
Reference: [9] Silbermann, A. Böttcher and B.: Analysis of Toeplitz Operators.2006, Springer, MR 2223704
Reference: [10] Gazeau, J.-P.: Coherent States in Quantum Physics.2009, Wiley-VCH,
Reference: [11] Hall, B.C.: Holomorphic methods in analysis and mathematical physics, First Summer School in Analysis and Mathematical Physics, Eds. S. Pérez-Esteva and C. Villegas-Blas.Contemp. Math., 260, 2000, 1-59, Am. Math. Soc., MR 1770752, 10.1090/conm/260/04156
Reference: [12] Iuliu-Lazaroiu, C., McNamee, D., Sämann, C.: Generalized Berezin-Toeplitz quantization of Kähler supermanifolds.J. High Energy Phys., 2009, 05, 2009, 055, arXiv: 0811.4743v2. MR 2511387, 10.1088/1126-6708/2009/05/055
Reference: [13] Karlovich, A. Yu.: Higher order asymptotic formulas for Toeplitz matrices with symbols in generalized Hölder spaces.Operator Algebras, Operator Theory and Applications, Eds. Maria Amélia Bastos et al, 2008, 207-228, Birkhäuser, arXiv: 0705.0432. Zbl 1157.47022, MR 2681889
Reference: [14] Karlovich, A. Yu.: Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras.Modern Anal. Appl, 2009, 341-359, Springer, arXiv: 0803.3767. Zbl 1198.47045, MR 2568640
Reference: [15] Kerr, R.: Products of Toeplitz Operators on a Vector Valued Bergman Space.Integral Equations Operator Theory, 66, 3, 2010, 571-584, arXiv:0804.4234. Zbl 1218.47047, MR 2601569, 10.1007/s00020-010-1756-0
Reference: [16] Lieb, E.H.: The classical limit of quantum spin systems.Commun. Math. Phys., 31, 4, 1973, 327-340, Zbl 1125.82305, MR 0349181, 10.1007/BF01646493
Reference: [17] Manin, Yu.I.: Topics in Noncommutative Geometry.1991, Princeton University Press, Zbl 0724.17007, MR 1095783
Reference: [18] Martínez-Avendaño, R.A., Rosenthal, P.: An Introduction to Operators on the Hardy-Hilbert space.2007, Springer, Zbl 1116.47001, MR 2270722
Reference: [19] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. I: Functional Analysis.1972, Academic Press,
Reference: [20] Reed, M., Simon, B.: Mathematical Methods of Modern Physics, Vol. II: Fourier Analysis, Self-Adjointness.1975, Academic Press, MR 0493420
Reference: [21] Sontz, S.B.: A Reproducing Kernel and Toeplitz Operators in the Quantum Plane.Communications in Mathematics, 21, 2, 2013, 137-160, arXiv:1305.6986. Zbl 1297.46023, MR 3159286
Reference: [22] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part I: Reproducing Kernels.Geometric Methods in Physics. XXXI Workshop 2012. Trends in Mathematics, Eds. P. Kielanowski et al., 2013, 47-63, Birkhäuser, arXiv:1204.1033v3. MR 3363992
Reference: [23] Sontz, S.B.: Toeplitz Quantization without Measure or Inner Product.Geometric Methods in Physics. XXXII Workshop 2013. Trends in Mathematics, 2014, 57-66, \unskip , arXiv:1312.0588. Zbl 1326.47030, MR 3587680
Reference: [24] Sontz, S.B.: Paragrassmann Algebras as Quantum Spaces, Part II: Toeplitz Operators.Journal of Operator Theory, 71, 2014, 411-426, arXiv:1205.5493, doi: http://dx.doi.org/10.7900/jot.2012may24.1969. MR 3214644, 10.7900/jot.2012may24.1969
Reference: [25] Timmermann, T.: An invitation to quantum groups and duality: From Hopf algebras to multiplicative unitaries and beyond.2008, Euro. Math. Soc., Zbl 1162.46001, MR 2397671
.

Files

Files Size Format View
ActaOstrav_24-2016-1_5.pdf 537.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo