Previous |  Up |  Next

Article

Title: On the Example of Almost Pseudo-Z-symmetric Manifolds (English)
Author: Baishya, Kanak Kanti
Author: Peška, Patrik
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 1
Year: 2016
Pages: 5-10
Summary lang: English
.
Category: math
.
Summary: In the present paper we have obtained a new example of non-Ricci-flat almost pseudo-Z-symmetric manifolds in the class of equidistant spaces, which admit non-trivial geodesic mappings. (English)
Keyword: (pseudo-) Riemannian manifold
Keyword: almost pseudo-Z-symmetric spaces
Keyword: equidistant spaces
MSC: 53B20
MSC: 53B30
MSC: 53C21
idZBL: Zbl 1365.53021
idMR: MR3674593
.
Date available: 2016-08-30T11:48:12Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145808
.
Reference: [1] Brinkmann, H. W.: Einstein spaces which mapped conformally on each other.. Math. Ann. 94 (1925). MR 1512246, 10.1007/BF01208647
Reference: [2] Cartan, É.: Les espaces riemanniens symétriques.. Verhandlungen Kongress Zürich 1 (1932), 152–161. Zbl 0006.42102
Reference: [3] Chepurna, O., Hinterleitner, I.: On the mobility degree of (pseudo-) Riemannian spaces with respect to concircular mappings.. Miskolc Math. Notes 14, 2 (2013), 561–568. Zbl 1299.53036, MR 3144092
Reference: [4] De, U. C., Pal, P.: On almost pseudo-Z-symmetric manifolds.. Acta Univ. Palack. Olomuc., Fac. Rer. Nat., Math. 53, 1 (2014), 25–43. Zbl 1312.53065, MR 3331069
Reference: [5] Dey, S. K., Baishya, K. K.: On the existence of some types of Kenmotsu manifolds.. Univers. J. Math. Math. Sci. 6, 1 (2014), 13–32. Zbl 1309.53030, MR 3099046
Reference: [6] Hinterleitner, I., Mikeš, J.: Geodesic mappings onto Weyl manifolds.. J. Appl. Math. 2, 1 (2009), 125–133, In: Proc. 8th Int. Conf. on Appl. Math. (APLIMAT 2009), Bratislava, 2009, 423–430.
Reference: [7] Kaigorodov, V. R.: Structure of space-time curvature.. J. Sov. Math. 28 (1985), 256–273. Zbl 0559.53008, 10.1007/BF02105213
Reference: [8] Mikeš, J.: Geodesic mappings of semisymmetric Riemannian spaces.. Archives at VINITI, Odessk. Univ. 3924-76, Moscow, 1976.
Reference: [9] Mikeš, J.: On geodesic mappings of 2-Ricci symmetric Riemannian spaces.. Math. Notes 28 (1981), 622–624, Transl. from: Mat. Zametki 28 (1980), 313–317. MR 0587405, 10.1007/BF01157926
Reference: [10] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces.. Tr. Geom. Semin. 13 (1981), 61–62.
Reference: [11] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces.. J. Math. Sci. (New York) 78, 3 (1996), 311–333, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 11 (2002), 121–162. MR 1384327, 10.1007/BF02365193
Reference: [12] Mikeš, J.: Holomorphically projective mappings and their generalizations.. J. Math. Sci. (New York) 89, 3 (1998), 1334–1353, Transl. from: Itogi Nauki Tekh., Ser. Sovrem Mat. Prilozh., Temat. Obz. 30 (2002), 258–289. MR 1619720, 10.1007/BF02414875
Reference: [13] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential Geometry of Special Mappings.. Palacký University, Olomouc, 2015. Zbl 1337.53001, MR 3442960
Reference: [14] Mikeš, J., Tolobaev, O. S.: Symmetric and projectively symmetric spaces with affine connection.. In: Investigations in topological and generalized spaces, Kirgiz. Gos. Univ., Frunze, 1988, 58–63, (in Russian). MR 1165335
Reference: [15] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations.. Palacký University, Olomouc, 2009. Zbl 1222.53002, MR 2682926
Reference: [16] Shaikh, A. A., Baishya, K. K., Eyasmin, S.: On $\varphi $-recurrent generalized $(k,\mu )$-contact metric manifolds.. Lobachevskii J. Math. 27, 3-13 (2007), electronic only. MR 2396965
Reference: [17] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces.. Nauka, Moscow, 1979. Zbl 0637.53020, MR 0552022
Reference: [18] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds.. In: Publ. Comp. Colloq. Math. Soc. János Bolyai 56, North-Holland Publ., Amsterdam, 1992, 663–670. Zbl 0791.53021, MR 1211691
Reference: [19] Walker, A. G.: On Ruse’s spaces of recurrent curvature.. Proc. London Math. Soc. 52, 2 (1950), 36–64. Zbl 0039.17702, MR 0037574, 10.1112/plms/s2-52.1.36
Reference: [20] Yano, K.: Concircular geometry.. Proc. Imp. Acad. Tokyo 16 (1940), 195–200, 354–360, 442–448, 505–511. Zbl 0025.08504, 10.3792/pia/1195578943
Reference: [21] Yılmaz, H. B.: On decomposable almost pseudo conharmonically symmetric manifolds.. Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 51, 1 (2012), 111–124. Zbl 1273.53010, MR 3060013
.

Files

Files Size Format View
ActaOlom_55-2016-1_1.pdf 293.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo