Title:
|
On Uniqueness Theoremsfor Ricci Tensor (English) |
Author:
|
Khripunova, Marina B. |
Author:
|
Stepanov, Sergey E. |
Author:
|
Tsyganok, Irina I. |
Author:
|
Mikeš, Josef |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
47-52 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold $M$ and a symmetric 2-tensor $r$, construct a metric on $M$ whose Ricci tensor equals $r$. In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with non-negative section curvature. In addition, we extended our result to complete non-compact Riemannian manifolds with nonnegative sectional curvature and with finite total scalar curvature. (English) |
Keyword:
|
Uniqueness theorem for Ricci tensor |
Keyword:
|
compact and complete Riemannian manifolds |
Keyword:
|
vanishing theorem |
MSC:
|
53C20 |
idZBL:
|
Zbl 1373.53045 |
idMR:
|
MR3674599 |
. |
Date available:
|
2016-08-30T11:53:27Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145816 |
. |
Reference:
|
[1] DeTurck, D., Koiso, N.: Uniqueness and non-existence of metrics with prescribed Ricci curvature.. Annales de l’Institut Henri Poincare (C) Analyse non lineaire 1, 5 (1984), 351–359. Zbl 0556.53026, MR 0779873 |
Reference:
|
[2] Hamilton, R. S.: The Ricci curvature equation.. Lecture notes: Seminar on nonlinear partial differential equations, Mathematical Sciences Research Institute Publications, Berkeley, 1983, 47–72. MR 0765228 |
Reference:
|
[3] Becce, A. L.: Einstein manifolds.. Springer-Verlag, Berlin–Heidelberg, 1987. MR 0867684 |
Reference:
|
[4] Eells, J., Sampson, J. H.: Harmonic mappings of Riemannian manifolds.. American Journal of Mathematics 86, 1 (1964), 109–160. Zbl 0122.40102, MR 0164306, 10.2307/2373037 |
Reference:
|
[5] Stepanov, S., Tsyganok, I.: Vanishing theorems for projective and harmonic mappings.. Journal of Geometry 106, 3 (2015), 640–641. MR 1878047 |
Reference:
|
[6] Yano, K., Bochner, S.: Curvature and Betti numbers.. Princeton Univ. Press, Princeton, 1953. Zbl 0051.39402, MR 0062505 |
Reference:
|
[7] Vilms, J.: Totally geodesic maps.. Journal of Differential Geometry 4, 1 (1970), 73–79. Zbl 0194.52901, MR 0262984, 10.4310/jdg/1214429276 |
Reference:
|
[8] Schoen, R., Yau, S. T.: Harmonic maps and topology of stable hypersurfaces and manifolds with non-negative Ricci curvature.. Commenttarii Mathematici Helvetici 51, 1 (1976), 333–341. MR 0438388, 10.1007/BF02568161 |
Reference:
|
[9] Yau, S. T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry.. Indiana University Mathematics Journal 25, 7 (1976), 659–679. Zbl 0335.53041, MR 0417452, 10.1512/iumj.1976.25.25051 |
Reference:
|
[10] Yau, S. T.: Seminar on Differential Geometry.. Annals of Mathematics Studies, 102, Princeton Univ. Press, Princeton, NJ, 1982. Zbl 0471.00020, MR 0645728 |
Reference:
|
[11] Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a Riemannian manifold.. Journal of Differential Geometry 3, 3-4 (1969), 379–392. MR 0266084, 10.4310/jdg/1214429060 |
Reference:
|
[12] Pigola, S., Rigoli, M., Setti, A. G.: Vanishing and finiteness results in geometric analysis. A generalization of the Bochner technique.. Birkhäuser, Basel, 2008. Zbl 1150.53001, MR 2401291 |
. |