Previous |  Up |  Next

Article

Title: Automorphisms of Spacetime Manifold with Torsion (English)
Author: Pan’Zhenskii, Vladimir Ivanovich
Author: Surina, Olga Petrovna
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 1
Year: 2016
Pages: 87-94
Summary lang: English
.
Category: math
.
Summary: In this paper we prove that the maximum dimension of the Lie group of automorphisms of the Riemann–Cartan 4-dimensional manifold does not exceed 8, and if the Cartan connection is skew-symmetric or semisymmetric, the maximum dimension is equal to 7. In addition, in the case of the Riemann–Cartan $n$-dimensional manifolds with semisymmetric connection the maximum dimension of the Lie group of automorphisms is equal to $n(n-1)/2+1$ for any $n>2$. (English)
Keyword: Riemann–Cartan manifolds
Keyword: automorphisms
Keyword: semi-symmetric connection
MSC: 53C05
MSC: 53C25
idZBL: Zbl 1365.53023
idMR: MR3674603
.
Date available: 2016-08-30T11:58:30Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145820
.
Reference: [1] Gordeeva, I. A., Pan’zhenskii, V. I., Stepanov, S. E.: Riemann–Cartan manifolds.. In: Modern Mathematics and Its Applications 123 Geometry, VINITI, Moscow, 2009, 110–141, (in Russian). MR 2866744
Reference: [2] Tamm, I. E.: On the curved momentum space.. In: Selected Papers 4, Springer-Verlag, Berlin, Heidelberg, 1991, 197–210; Selected Scientific Papers 2, Nauka, Moscow, 1975, 218–225.
Reference: [3] Tamm, I. E., Vologodskii, V. G.: On the use of curved momentum space in the construction of nonlocal Euclidean field theory.. In: Collection of Scientific Papers 2, Nauka, Moscow, 1975, 226–253, (in Russian). Princeton Univ. Press, Princetton, NJ, 1953; Inostrannaya Literatura, Moscow, 1957.
Reference: [4] Pan’zhenskii, V. I.: Maximally movable Riemannian spaces with torsion.. Math. Notes 85, 5-6 (2010), 720–723; Mat. Zametki 85, 5 (2009), 754–757. MR 2572865
Reference: [5] Pan’zhenskii, V. I.: Automorphisms of the Riemann–Cartan space-time manifold.. Tr. Mezhdunar. Geom. Tsentra 5, 2 (2012), 27–34.
Reference: [6] Pan’zhenskii, V. I.: Automorphisms of Riemann-Cartan Manifolds with Semi-Symmetric Connection.. Journal of Mathematical Physics, Analysis, Geometry 10, 2 (2014), 233–239. MR 3236968
Reference: [7] Pan’zhenskii, V. I.: Automorphisms of Riemann–Cartan Manifolds.. Math. Notes 98, 4 (2015), 613–623. Zbl 1337.53045, MR 3438511, 10.1134/S000143461509028X
Reference: [8] Yano, K., Bochner, S.: Curvature and Betti Numbers.. Princeton Univ. Press, Princetton, NJ, 1953; Inostrannaya Literatura, Moscow, 1957. Zbl 0051.39402, MR 0062505
Reference: [9] Stepanov, S. E., Gordeeva, I. A.: Pseudo-Killing and pseudoharmonic vector Fields on a Riemann–Cartan manifold.. Math. Notes 87, 1-2 (2010), 248–257; Mat. Zametki 87, 2 (2010), 267–279. Zbl 1197.53049, MR 2731477, 10.1134/S0001434610010311
.

Files

Files Size Format View
ActaOlom_55-2016-1_11.pdf 305.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo