[2] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II.  Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
[4] Kowalski, O., Opozda, B., Vlášek, Z.: 
A Classification of Locally Homogeneous Affine Connections with Skew-Symmetric Ricci Tensor on 2-Dimensional Manifolds.  Monatsh. Math. 130 (2000), 109–125. 
DOI 10.1007/s006050070041 | 
MR 1767180 | 
Zbl 0993.53008[5] Kowalski, O., Opozda, B., Vlášek, Z.: 
A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach.  CEJM 2, 1 (2004), 87–102. 
MR 2041671[6] Mikeš, J., Stepanova, E., Vanžurová, A.: 
Differential Geometry of Special Mappings.  Palacký University, Olomouc, 2015. 
MR 3442960 | 
Zbl 1337.53001[7] Mikeš, J., Vanžurová, A., Hinterleitner, I.: 
Geodesic Mappings and Some Generalizations.  Palacký University, Olomouc, 2009. 
MR 2682926 | 
Zbl 1222.53002[8] Olver, P. J.: 
Equivalence, Invariants and Symmetry.  Cambridge Univ. Press, Cambridge, 1995. 
MR 1337276 | 
Zbl 0837.58001[11] Vanžurová, A., Žáčková, P.: Metrization of linear connections.  Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.
[12] Vanžurová, A., Žáčková, P.: 
Metrizability of connections on two-manifolds.  Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170. 
MR 2641956 | 
Zbl 1195.53023[13] Vanžurová, A.: 
On metrizability of locally homogeneous affine connections on 2-dimensional manifolds.  Arch. Math. (Brno) 49 (2013), 199–209. 
MR 3159333[14] Vanžurová, A.: 
On metrizability of a class of 2-manifolds with linear connection.  Miskolc Math. Notes 14, 3 (2013), 311–317. 
MR 3144100 | 
Zbl 1299.53034