Previous |  Up |  Next

Article

Title: On the joint entropy of $d$-wise-independent variables (English)
Author: Gavinsky, Dmitry
Author: Pudlák, Pavel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 333-343
Summary lang: English
.
Category: math
.
Summary: How low can the joint entropy of $n$ $d$-wise independent (for $d\geq 2$) discrete random variables be, subject to given constraints on the individual distributions (say, no value may be taken by a variable with probability greater than $p$, for $p< 1$)? This question has been posed and partially answered in a recent work of Babai [{Entropy versus pairwise independence} (preliminary version), {http://people.cs.uchicago.edu/~laci/papers/13augEntropy.pdf}, 2013]. In this paper we improve some of his bounds, prove new bounds in a wider range of parameters and show matching upper bounds in some special cases. In particular, we prove tight lower bounds for the min-entropy (as well as the entropy) of pairwise and three-wise independent balanced binary variables for infinitely many values of $n$. (English)
Keyword: $d$-wise-independent variables
Keyword: entropy
Keyword: lower bound
MSC: 60C05
idZBL: Zbl 06674884
idMR: MR3554514
DOI: 10.14712/1213-7243.2015.169
.
Date available: 2016-09-22T15:24:59Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145838
.
Reference: [ABI86] Alon N., Babai L., Itai A.: A fast and simple randomized parallel algorithm for the maximal independent set problem.J. Algorithms 7 (1986), no. 4, 567–583. Zbl 0631.68063, MR 0866792, 10.1016/0196-6774(86)90019-2
Reference: [AS08] Alon N., Spencer J.: The Probabilistic Method.John Wiley, Hoboken, NJ, 2008. Zbl 1333.05001, MR 2437651
Reference: [Bab13] Babai L.: Entropy versus pairwise independence.(preliminary version), http://people.cs.uchicago.edu/ laci/papers/13augEntropy.pdf, 2013.
Reference: [Can10] Cantelli F.P.: Intorno ad un teorema fondamentale della teoria del rischio.Bollettino dell' Associazione degli Attuari Italiani 24 (1910), 1–23.
Reference: [Lan65] Lancaster H.O.: Pairwise statistical independence.Ann. Math. Statist. 36 (1965), no. 4, 1313–1317. Zbl 0131.18105, MR 0176507, 10.1214/aoms/1177700007
Reference: [LW06] Luby M., Wigderson A.: Pairwise independence and derandomization.Found. Trends Theor. Comput. Sci. 1 (2005), no. 4, 237–301. Zbl 1140.68402, MR 2379508, 10.1561/0400000009
Reference: [MS83] MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes.North Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Zbl 0657.94010
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_7.pdf 272.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo