Previous |  Up |  Next

Article

Title: Nonlinear differential monomials sharing two values (English)
Author: Majumder, Sujoy
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 3
Year: 2016
Pages: 339-361
Summary lang: English
.
Category: math
.
Summary: Using the notion of weighted sharing of values which was introduced by Lahiri (2001), we deal with the uniqueness problem for meromorphic functions when two certain types of nonlinear differential monomials namely $\smash {h^{n}h^{(k)}}$ $(h=f,g)$ sharing a nonzero polynomial of degree less than or equal to $3$ with finite weight have common poles and obtain two results. The results in this paper significantly rectify, improve and generalize the results due to Cao and Zhang (2012). (English)
Keyword: uniqueness
Keyword: meromorphic function
Keyword: weighted sharing
Keyword: nonlinear differential polynomials
MSC: 30D35
idZBL: Zbl 06644018
idMR: MR3557584
DOI: 10.21136/MB.2016.0080-13
.
Date available: 2016-10-01T16:02:21Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145898
.
Reference: [1] Alzahary, T. C., Yi, H. X.: Weighted value sharing and a question of I. Lahiri.Complex Variables, Theory Appl. 49 (2004), 1063-1078. Zbl 1067.30055, MR 2111304, 10.1080/02781070410001701074
Reference: [2] Banerjee, A.: On uniqueness for nonlinear differential polynomials sharing the same 1-point.Ann. Pol. Math. 89 (2006), 259-272. Zbl 1104.30018, MR 2262553, 10.4064/ap89-3-3
Reference: [3] Banerjee, A.: Meromorphic functions sharing one value.Int. J. Math. Math. Sci. 2005 (2005), 3587-3598. Zbl 1093.30024, MR 2205158, 10.1155/IJMMS.2005.3587
Reference: [4] Bergweiler, W., Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order.Rev. Mat. Iberoam. 11 (1995), 355-373. Zbl 0830.30016, MR 1344897, 10.4171/RMI/176
Reference: [5] Cao, Y.-H., Zhang, X.-B.: Uniqueness of meromorphic functions sharing two values.J. Inequal. Appl. (electronic only) 2012 (2012), Article ID 100, 10 pages. Zbl 1291.30193, MR 2946490
Reference: [6] Chen, H. H., Fang, M. L.: On the value distribution of $f^{n}f'$.Sci. China Ser. A. 38 (1995), 789-798. MR 1360682
Reference: [7] Dou, J., Qi, X.-G., Yang, L.-Z.: Entire functions that share fixed-points.Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 355-367. Zbl 1216.30033, MR 2788409
Reference: [8] Fang, M., Hua, X.: Entire functions that share one value.J. Nanjing Univ., Math. Biq. 13 (1996), 44-48. Zbl 0899.30022, MR 1411806
Reference: [9] Fang, M., Qiu, H.: Meromorphic functions that share fixed-points.J. Math. Anal. Appl. 268 (2002), 426-439. Zbl 1030.30028, MR 1896207, 10.1006/jmaa.2000.7270
Reference: [10] Frank, G.: Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen.Math. Z. 149 German (1976), 29-36. MR 0422615
Reference: [11] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [12] K{ö}hler, L.: Meromorphic functions sharing zeros and poles and also some of their derivatives sharing zeros.Complex Variables, Theory Appl. 11 (1989), 39-48. Zbl 0637.30029, MR 0998240, 10.1080/17476938908814322
Reference: [13] Lahiri, I.: Weighted sharing and uniqueness of meromorphic functions.Nagoya Math. J. 161 (2001), 193-206. Zbl 0981.30023, MR 1820218, 10.1017/S0027763000027215
Reference: [14] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions.Complex Variables, Theory Appl. 46 (2001), 241-253. Zbl 1025.30027, MR 1869738, 10.1080/17476930108815411
Reference: [15] Lahiri, I., Dewan, S.: Value distribution of the product of a meromorphic function and its derivative.Kodai Math. J. 26 (2003), 95-100. Zbl 1077.30025, MR 1966685, 10.2996/kmj/1050496651
Reference: [16] Lahiri, I., Sahoo, P.: Uniqueness of non-linear differential polynomials sharing 1-points.Georgian Math. J. 12 (2005), 131-138. Zbl 1073.30022, MR 2136891
Reference: [17] Lahiri, I., Sarkar, A.: Nonlinear differential polynomials sharing 1-points with weight two.Chin. J. Contemp. Math. 25 (2004), 325-334. Zbl 1069.30051, MR 2159311
Reference: [18] Lin, W. C.: Uniqueness of differential polynomials and a problem of Lahiri.Pure Appl. Math. 17 Chinese (2001), 104-110. MR 1848848
Reference: [19] Xu, J.-F., Lü, F., Yi, H.-X.: Fixed-points and uniqueness of meromorphic functions.Comput. Math. Appl. 59 (2010), 9-17. Zbl 1189.30069, MR 2575487, 10.1016/j.camwa.2009.07.024
Reference: [20] Xu, J., Yi, H., Zhang, Z.: Some inequalities of differential polynomials.Math. Inequal. Appl. 12 (2009), 99-113. Zbl 1169.30314, MR 2489354
Reference: [21] Yang, C.-C.: On deficiencies of differential polynomials. II.Math. Z. 125 (1972), 107-112. Zbl 0217.38402, MR 0294642, 10.1007/BF01110921
Reference: [22] Yang, C.-C., Hua, X.: Uniqueness and value-sharing of meromorphic functions.Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. Zbl 0890.30019, MR 1469799
Reference: [23] Yang, L.: Value Distribution Theory.Translated and revised from the 1982 Chinese original Springer, Berlin; Beijing, Science Press (1993). Zbl 0790.30018, MR 1301781
Reference: [24] Yi, H. X.: On characteristic function of a meromorphic function and its derivative.Indian J. Math. 33 (1991), 119-133. Zbl 0799.30018, MR 1140875
Reference: [25] Zhang, J.: Uniqueness theorems for entire functions concerning fixed points.Comput. Math. Appl. 56 (2008), 3079-3087. Zbl 1165.30362, MR 2474563, 10.1016/j.camwa.2008.07.006
Reference: [26] Zhang, Q.: Meromorphic function that shares one small function with its derivative.\mbox{JIPAM}, J. Inequal. Pure Appl. Math. (electronic only) 6 (2005), Article No. 116, 13 pages. Zbl 1097.30033, MR 2178297
Reference: [27] Zhang, X.-Y., Lin, W.-C.: Uniqueness and value-sharing of entire functions.J. Math. Anal. Appl. 343 (2008), 938-950. Zbl 1152.30034, MR 2417114, 10.1016/j.jmaa.2008.02.011
Reference: [28] Zhang, T., Lü, W.: Uniqueness theorems on meromorphic functions sharing one value.Comput. Math. Appl. 55 (2008), 2981-2992. Zbl 1142.30330, MR 2401445, 10.1016/j.camwa.2007.11.029
.

Files

Files Size Format View
MathBohem_141-2016-3_4.pdf 312.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo