Previous |  Up |  Next

Article

Title: Linear optimization with bipolar max-parametric hamacher fuzzy relation equation constraints (English)
Author: Aliannezhadi, Samaneh
Author: Abbasi Molai, Ali
Author: Hedayatfar, Behnaz
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 531-557
Summary lang: English
.
Category: math
.
Summary: In this paper, the linear programming problem subject to the Bipolar Fuzzy Relation Equation (BFRE) constraints with the max-parametric hamacher composition operators is studied. The structure of its feasible domain is investigated and its feasible solution set determined. Some necessary and sufficient conditions are presented for its solution existence. Then the problem is converted to an equivalent programming problem. Some rules are proposed to reduce the dimensions of problem. Under these rules, some of the optimal variables are found without solving the problem. An algorithm is then designed to find an upper bound for its optimal objective value. With regard to this algorithm, a modified branch and bound method is extended to solve the problem. We combine the rules, the algorithm, and the modified branch and bound method in terms of an algorithm to solve the original problem. (English)
Keyword: bipolar fuzzy relation equations
Keyword: bipolar variables
Keyword: linear optimization
Keyword: modified branch and bound method
Keyword: max-parametric hamacher compositions
MSC: 90-xx
MSC: 90C70
MSC: 90Cxx
idZBL: Zbl 06644309
idMR: MR3565768
DOI: 10.14736/kyb-2016-4-0531
.
Date available: 2016-10-20T08:06:20Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145904
.
Reference: [1] Molai, A. Abbasi: Linear optimization with mixed fuzzy relation inequality constraints using the pseudo-t-norms and its application..Soft Computing 19 (2015), 3009-3027. 10.1007/s00500-014-1464-9
Reference: [2] Chen, L., Wang, P. P.: Fuzzy relation equations (I): The general and specialized solving algorithms..Soft Computing 6 (2002), 428-435. Zbl 1024.03520, 10.1007/s00500-001-0157-3
Reference: [3] Chen, L., Wang, P. P.: Fuzzy relation equations (II): The branch-poit-solutions and the categorized minimal solutions..Soft Computing 11 (2007), 33-40. 10.1007/s00500-006-0050-1
Reference: [4] Baets, B. De: Analytical solution methods for fuzzy relational equations..In: Fundamentals of fuzzy sets, the handbooks of fuzzy sets series (D. Dubois and H. Prade, eds.), Dordrecht, Kluwer 2000, Vol. 1, pp. 291-340. Zbl 0970.03044, MR 1890236, 10.1007/978-1-4615-4429-6_7
Reference: [5] Nola, A. Di, Pedrycz, W., Sessa, S.: On solution of fuzzy relational equations and their characterization..BUSEFAL 12 (1982), 60-71.
Reference: [6] Nola, A. Di, Pedrycz, W., Sessa, S., Sanchez, E.: Fuzzy relation equations theory as a basis of fuzzy modelling: An overview..Fuzzy Sets and Systems 40 (1991), 415-429. Zbl 0727.04005, MR 1104335, 10.1016/0165-0114(91)90170-u
Reference: [7] Nola, A. Di, Pedrycz, W., Sessa, S., Wang, P. Z.: Fuzzy relation equations under triangular norms: a survey and new results..Stochastica 8 (1984), 99-145. MR 0783401
Reference: [8] Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E.: Fuzzy Relation Equations and their Applications to Knowledge Engineering..Kluwer, Dordrecht 1989. Zbl 0694.94025, MR 1120025, 10.1007/978-94-017-1650-5
Reference: [9] Fang, S.-C., Li, G.: Solving fuzzy relation equations with a linear objective function..Fuzzy Sets and Systems 103 (1999), 107-113. Zbl 0933.90069, MR 1674026, 10.1016/s0165-0114(97)00184-x
Reference: [10] Feng, S., Ma, Y., Li, J.: A kind of nonlinear and non-convex optimization problems under mixed fuzzy relational equations constraints with max-min and max-average composition..In: Eighth International Conference on Computational Intelligence and Security, Guangzhou 2012. 10.1109/cis.2012.42
Reference: [11] Freson, S., Baets, B. De, Meyer, H. De: Linear optimization with bipolar max-min constraints..Inform. Sci. 234 (2013), 3-15. Zbl 1284.90104, MR 3039624, 10.1016/j.ins.2011.06.009
Reference: [12] Gottwald, S.: Fuzzy Sets and Fuzzy Logic: The Foundations of Application From a Mathematical Point of View..Vieweg, Wiesbaden 1993. Zbl 0782.94025, MR 1218623, 10.1007/978-3-322-86812-1
Reference: [13] Gottwald, S.: Generalized Solvability Behaviour for Systems of Fuzzy Equations..In: Discovering the world with fuzzy logic (V. Novák and I. Perfilieva, eds.), Physica-Verlag, Heidelberg 2000, pp. 401-430. Zbl 1006.03033, MR 1858109
Reference: [14] Guu, S.-M., Wu, Y.-K.: Minimizing a linear objective function with fuzzy relation equation constraints..Fuzzy Optimization and Decision Making 1 (2002), 347-360. Zbl 1055.90094, MR 1942675, 10.1023/a:1020955112523
Reference: [15] Guu, S.-M., Wu, Y.-K.: Minimizing a linear objective function under a max-t-norm fuzzy relational equation constraint..Fuzzy Sets and Systems 161 (2010), 285-297. Zbl 1190.90297, MR 2566245, 10.1016/j.fss.2009.03.007
Reference: [16] Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications..Upper Saddle River, Prentice Hall, NJ 1995. Zbl 0915.03001, MR 1329731, 10.1021/ci950144a
Reference: [17] Li, J., Feng, S., Mi, H.: A Kind of nonlinear programming problem based on mixed fuzzy relation equations constraints..Physics Procedia 33 (2012), 1717-1724. 10.1016/j.phpro.2012.05.276
Reference: [18] Li, P., Fang, S.-C.: A survey on fuzzy relational equations, Part I: Classification and solvability..Fuzzy Optimization and Decision Making 8 (2009), 179-229. MR 2511474, 10.1007/s10700-009-9059-0
Reference: [19] Li, P., Jin, Q.: Fuzzy relational equations with min-biimplication composition..Fuzzy Optimization and Decision Making 11 (2012), 227-240. Zbl 1254.03101, MR 2923611, 10.1007/s10700-012-9122-0
Reference: [20] Li, P., Jin, Q.: On the resolution of bipolar max-min equations..In: IEEE Trans. Fuzzy Systems, second review, 2013.
Reference: [21] Li, P., Liu, Y.: Linear optimization with bipolar fuzzy relational equation constraints using the Lukasiewicz triangular norm..Soft Computing 18 (2014), 1399-1404. Zbl 1335.90123, 10.1007/s00500-013-1152-1
Reference: [22] Loetamonphong, J., Fang, S.-C.: Optimization of fuzzy relation equations with max-product composition..Fuzzy Sets and Systems 118 (2001), 509-517. Zbl 1044.90533, MR 1809397, 10.1016/s0165-0114(98)00417-5
Reference: [23] Markovskii, A.: Solution of fuzzy equations with max-product composition in inverse control and decision making problems..Automation and Remote Control 65 (2004), 1486-1495. Zbl 1114.90488, MR 2097942, 10.1023/b:aurc.0000041426.51975.50
Reference: [24] Markovskii, A.: On the relation between equations with max-product composition and the covering problem..Fuzzy Sets and Systems 153 (2005), 261-273. Zbl 1073.03538, MR 2150284, 10.1016/j.fss.2005.02.010
Reference: [25] Miyakoshi, M., Shimbo, M.: Solutions of composite fuzzy relational equations with triangular norms..Fuzzy Sets and Systems 16 (1985), 53-63. Zbl 0582.94031, MR 0790742, 10.1016/s0165-0114(85)80005-1
Reference: [26] Pedrycz, W.: Fuzzy Control and Fuzzy Systems..Research Studies Press/Wiely, New York 1989. Zbl 0839.93006, MR 1033268
Reference: [27] Pedrycz, W.: Processing in relational structures: Fuzzy relational equations..Fuzzy Sets and Systems 40 (1991), 77-106. Zbl 0721.94030, MR 1103657, 10.1016/0165-0114(91)90047-t
Reference: [28] Peeva, K., Kyosev, Y.: Fuzzy Relational Calculus: Theory, Applications and Software..World Scientific, New Jersey 2004. Zbl 1083.03048, MR 2379415
Reference: [29] Sanchez, E.: Resolution of composite fuzzy relation equation..Inform. Control 30 (1976), 38-48. MR 0437410, 10.1016/s0019-9958(76)90446-0
Reference: [30] Sanchez, E.: Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic..In: Fuzzy Automata and Decision Processes (M. M. Gupta, G. N. Saridis, B. R. Gaines, eds.), North-Holland, Amsterdam 1977, pp. 221-234. MR 0476591
Reference: [31] Shieh, B.-S.: Minimizing a linear objective function under a fuzzy max-t norm relation equation constraint..Inform. Sci. 181 (2011), 832-841. Zbl 1211.90326, MR 2748016, 10.1016/j.ins.2010.10.024
Reference: [32] Thapar, A., Pandey, D., Gaur, S. K.: Optimization of linear objective function with max-t fuzzy relation equations..Applied Soft Computing 9 (2009), 1097-1101. 10.1016/j.asoc.2009.02.004
Reference: [33] Wu, Y.-K., Guu, S.-M.: A note on fuzzy relation programming problems with max-strict-t-norm composition..Fuzzy Optimization and Decision Making 3 (2004), 271-278. Zbl 1091.90087, MR 2102801, 10.1023/b:fodm.0000036862.45420.ea
Reference: [34] Wu, Y.-K., Guu, S.-M.: Minimizing a linear function under a fuzzy max-min relational equation constraint..Fuzzy Sets and Systems 150 (2005), 147-162. Zbl 1074.90057, MR 2114318, 10.1016/j.fss.2004.09.010
Reference: [35] Wu, Y.-K., Guu, S.-M., Liu, J. Y.-C.: An accelerated approach for solving fuzzy relation equations with a linear objective function..IEEE Trans. Fuzzy Systems 10 (2002), 552-558. 10.1109/tfuzz.2002.800657
Reference: [36] Yang, S.-J.: An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition-min composition..Fuzzy Sets and Systems 255 (2014), 41-51. Zbl 1334.90223, MR 3258150, 10.1016/j.fss.2014.04.007
.

Files

Files Size Format View
Kybernetika_52-2016-4_3.pdf 549.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo