Previous |  Up |  Next

Article

Title: Finite-time outer synchronization between two complex dynamical networks with time delay and noise perturbation (English)
Author: Ma, Zhi-cai
Author: Sun, Yong-zheng
Author: Shi, Hong-jun
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 607-628
Summary lang: English
.
Category: math
.
Summary: In this paper, the finite-time stochastic outer synchronization and generalized outer synchronization between two complex dynamic networks with time delay and noise perturbation are studied. Based on the finite-time stability theory, sufficient conditions for the finite-time outer synchronization are obtained. Numerical examples are examined to illustrate the effectiveness of the analytical results. The effect of time delay and noise perturbation on the convergence time are also numerically demonstrated. (English)
Keyword: complex dynamic networks
Keyword: synchronization
Keyword: time delay
Keyword: noise perturbation
MSC: 65L99
MSC: 70K99
idZBL: Zbl 06644313
idMR: MR3565772
DOI: 10.14736/kyb-2016-4-0607
.
Date available: 2016-10-20T08:14:53Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145908
.
Reference: [1] Arenas, A., Kurths, J., Moreno, Y., Zhou, C. S.: Synchronization in complex networks..Phys. Rep. 469 (2008), 93-153. MR 2477097, 10.1016/j.physrep.2008.09.002
Reference: [2] Asheghan, M. M., Míguez, J., Hamidi-Beheshti, M. T., Tavazoe, M. S.: Robust outer synchronization between two complex networks with fractional order dynamics..Chaos 21 (2011), 033121. MR 3388455, 10.1063/1.3629986
Reference: [3] Barabasi, A. L.: Scal-free networks: a decade and beyond..Science 325 (2009), 412-413. MR 2548299, 10.1126/science.1173299
Reference: [4] Barabasi, A. L., Albert, R.: Emergence of scaling in random networks..Science 286 (1999), 509-512. Zbl 1226.05223, MR 2091634, 10.1126/science.286.5439.509
Reference: [5] Blat, S. P., Bernstein, D. S.: Finite-time stability of continuous autonomous systems..SIAM. J. Control Optim. 38 (2000), 751-766. MR 1756893, 10.1137/s0363012997321358
Reference: [6] Guo, W. L., Austin, F., Chen, S.H.: Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling..Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 1631-1639. Zbl 1221.34213, MR 2576789, 10.1016/j.cnsns.2009.06.016
Reference: [7] Hardy, G., Littlewood, J., Polya, G.: Inequalities..Cambridge University Press 1988. Zbl 0634.26008, MR 0944909
Reference: [8] Hauschildt, B., Jason, N. B., Balanov, A., Scholl, E.: Noise-induced cooperative dynamics and its control in coupled neuron models..Phys. Rev. E 74 (2006), 051906. MR 2293732, 10.1103/physreve.74.051906
Reference: [9] Huang, J. J., Li, C. D., Huang, T. W., He, X.: Finite-time lag synchronization of delayed neural networks..Neurocomputing 139 (2013), 145-149. 10.1016/j.neucom.2014.02.050
Reference: [10] Huang, X. Q., Lin, W., Yang, B.: Global finite-time synchronization of a class of uncertain nonlinear systems..Automatica 41 (2005), 881-888. MR 2157720, 10.1016/j.automatica.2004.11.036
Reference: [11] Kazanovich, Y. B., Borisyuk, R. M.: Synchronization in a neural network of phase oscillators with the central element..Biological Cybernetics 71 (1994), 177-185. Zbl 0804.92002, MR 1347145, 10.1007/s004220050080
Reference: [12] Kloeden, P. E., Platen, E.: Numerical Solution of Stochastic Differential Equations..Springer, Heidelberg 1992. Zbl 1216.60052, MR 1214374, 10.1007/978-3-662-12616-5
Reference: [13] Korniss, G.: Synchronization in weighted unccorrelated complex networks in a noisy environment: optimization and connections with transport efficiency..Phys. Rev. E 75 (2007), 051121. 10.1103/physreve.75.051121
Reference: [14] Li, H. Y., Hu, Y. A., Wang, R. Q.: Adaptive finite-time synchronization of cross-strict feedback hyperchaotic systems with parameter uncertainties..Kybernetika 49 (2013), 554-567. MR 3117914
Reference: [15] Li, L., Kurths, J., Peng, H., Yang, Y., Luo, Q.: Exponentially asymptotic synchronization of uncertain complex time-delay dynamical networks..The European Physical Journal B 86 (2013), 1-9. MR 3082432, 10.1140/epjb/e2013-30517-6
Reference: [16] Lin, W., Chen, G. R.: Using white noise to enhance synchronization of coupled chaotic systems..Chaos 16 (2006), 013134. Zbl 1144.37375, MR 2220550, 10.1063/1.2183734
Reference: [17] Lü, J. H., Yu, X. H., Chen, G. R.: Chaos synchronization of general complex dynamical networks..Physica A 334 (2004), 281-302. MR 2044940, 10.1016/j.physa.2003.10.052
Reference: [18] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption..Kybernetika 46 (2010), 1-18. Zbl 1190.93038, MR 2666891
Reference: [19] Mei, J., Jiang, M. H., Xu, W. M., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay..Commun. Nonlinear Sci. Numer. Simulat. 18 (2013), 2462-2478. Zbl 1311.34157, MR 3042052, 10.1016/j.cnsns.2012.11.009
Reference: [20] Nagail, K. H., Kori, H.: Noise-induced synchronization of a large population of globally coupled nonidentical oscillators..Phys. Rev.E 81 (2010), 065202. 10.1103/physreve.81.065202
Reference: [21] Pecora, L. M., Carrol, T. L.: Master stability functions for synchronized coupled system..Phys. Rev. Lett. 80 (1998), 2109-2112. 10.1103/physrevlett.80.2109
Reference: [22] Sun, W. G., Li, S. X.: Generalized outer synchronization between two uncertain dynamical networks..Nonlinear Dyn. 77 (2014), 481-489. Zbl 1314.34121, MR 3229176, 10.1007/s11071-014-1311-7
Reference: [23] Sun, Y. Z., Li, W., Ruan, J.: Generalized outer synchronization between complex dynamic networks with time delay and noise perturbation..Commun. Nonliear Sci. Numer. Simul. 18 (2013), 989-998. MR 2996611, 10.1016/j.cnsns.2012.08.040
Reference: [24] Sun, F., Peng, H., Luo, Q., Li, L., Yang, Y.: Parameter identification and projective synchronization between different chaotic systems..Chaos 19 (2009), 023109. Zbl 1309.34106, MR 2548749, 10.1063/1.3127599
Reference: [25] Sun, Y. Z., Ruan, J.: Synchronization in coupled time-delayed systems with parameter mismath and noise perturbation..Chaos 19 (2009), 043113. 10.1063/1.3262488
Reference: [26] Sun, Y. Z., Shi, H. J., Bakare, E. A., Meng, Q. X.: Noise-induced outer synchronization between two different complex dynamical networks..Nonlinear Dyn. 76 (2014), 519-528. Zbl 1319.37028, MR 3189189, 10.1007/s11071-013-1145-8
Reference: [27] Tang, H. W., Chen, L., Lu, J. A., Tse, C. K.: Adaptive synchronization between two nonidentical topological structures..Physica A 387 (2008), 5623-5630. 10.1016/j.physa.2008.05.047
Reference: [28] Wang, G. J., Cao, J. D., Lu, J. Q.: Outer synchronization between two nonidentical networks with circumstance noise..Physica A 389 (2010), 1480-1488. 10.1016/j.physa.2009.12.014
Reference: [29] Wang, X. F., Chen, G. R.: Synchronization in scal-free dynamical networks: robustness and fragility..IEEE Trans. Circuits Syst. I 49 (2002), 54-62. MR 1874226, 10.1109/81.974874
Reference: [30] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time synchronization of uncertain unified chaotic systems based on CLF..Nonlinear Anal.: Real World Appl. 10 (2009), 2842-2849. Zbl 1183.34072, MR 2523247, 10.1016/j.nonrwa.2008.08.010
Reference: [31] Wang, H., Han, Z. Z., Xie, Q. Y., Zhang, W.: Finite-time chaos control via nonsingular terminal sliding model control..Commun. Nonlinear Sci. Numer. Simulat. 14 (2012), 2728-2733. MR 2483882, 10.1016/j.cnsns.2008.08.013
Reference: [32] Wang, W., Li, L., Peng, H., Xiao, J., Yang, Y.: Synchronization control of memristor-based recurrent neural networks with perturbations..Neural Networks. 53 (2014), 8-14. Zbl 1307.93038, 10.1016/j.neunet.2014.01.010
Reference: [33] Wang, W. P., Peng, H. P., Li, L. X., Xiao, J. H., Yang, Y. X.: Finite-time function projective synchronization in complex multi-links networks with time-varying delay..Neural Process. Lett. 41 (2015), 71-88. 10.1007/s11063-013-9335-4
Reference: [34] Watts, D. J., Strogatz, S. H.: Collective dynamics of small-world networks..Nature 393 (1998), 440-442. 10.1038/30918
Reference: [35] Yang, X. S., Cao, J. D.: Finite-time stochastic synchronization of complex networks..App. Math. Modeling. 34 (2010), 3631-3641. Zbl 1201.37118, MR 2651795, 10.1016/j.apm.2010.03.012
Reference: [36] Yu, W. W., Chen, G. R., Lü, J. H.: On pinning synchronization of complex dynamical networks.. Zbl 1158.93308
Reference: [37] Zhou, X. B., Jiang, M. R., Huang, Y. Q.: Switched modified function projective synchronization between two complex nonlinear hyperchaotic systems based on adaptive control and parameter identification..Kybernetika 50 (2014), 632-642. Zbl 1311.34120, MR 3275089, 10.14736/kyb-2014-4-0632
Reference: [38] Zhou, C. S., Motter, A. E., Kurths, J.: Universality in the synchronization of weighted random networks..Phys. Rev. Lett. 96 (2006), 034101. 10.1103/physrevlett.96.034101
.

Files

Files Size Format View
Kybernetika_52-2016-4_7.pdf 1.286Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo