Previous |  Up |  Next

Article

Title: Killing spinor-valued forms and the cone construction (English)
Author: Somberg, Petr
Author: Zima, Petr
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 341-355
Summary lang: English
.
Category: math
.
Summary: On a pseudo-Riemannian manifold $\mathbb{M}$ we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on $\mathbb{M}$ and parallel fields on the metric cone over $\mathbb{M}$ for spinor-valued forms. (English)
Keyword: pseudo-Riemannian spin manifolds
Keyword: Killing type equations
Keyword: cone construction
Keyword: spinor-valued differential forms
MSC: 35R01
MSC: 53C15
MSC: 53C27
MSC: 81R25
idZBL: Zbl 06674909
idMR: MR3610868
DOI: 10.5817/AM2016-5-341
.
Date available: 2016-12-20T22:00:07Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145940
.
Reference: [1] Bär, C.: Real Killing spinors and holonomy.Communications in Mathematical Physics 154 (1993), 509–521. Zbl 0778.53037, MR 1224089, 10.1007/BF02102106
Reference: [2] Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing spinors on Riemannian manifolds.Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], B. G. Teubner Verlagsgesellschaft, 1991. Zbl 0734.53003, MR 1164864
Reference: [3] Berger, M.: Sur les groupes d’holonomie homogènes de variétés à connexion affine et des variétés riemanniennes.Bulletin de la Société Mathématique de France 83 (1955), 279–308. Zbl 0068.36002, MR 0079806
Reference: [4] Bohle, C.: Killing spinors on Lorentzian manifolds.J. Geom. Phys. 45 (3–4) (2003), 285–308. Zbl 1027.53050, MR 1952661, 10.1016/S0393-0440(01)00047-X
Reference: [5] Duff, M.J., Nilsson, B.E.W., Pope, C.N.: Kaluza-Klein supergravity.Physics Reports. A Review Section of Physics Letters, vol. 130 (1–2), 1986, pp. 1–142. MR 0822171
Reference: [6] Duff, M.J., Pope, C.N.: Kaluza-Klein Supergravity and the Seven Sphere.Supersymmetry and Supergravity '82, Proceedings of the Trieste September 1982 School, World Scientific Press, 1983. MR 0728776
Reference: [7] Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnegativer Skalarkrümmung.Math. Nachr. 97 (1) (1980), 117–146. Zbl 0462.53027, MR 0600828, 10.1002/mana.19800970111
Reference: [8] Friedrich, T.: On the conformal relation between twistors and Killing spinors.Proceedings of the Winter School “Geometry and Physics”, vol. 22 (2), Circolo Matematico di Palermo, 1990, pp. 59–75. Zbl 0703.53012, MR 1061789
Reference: [9] Semmelmann, U.: Conformal Killing forms on Riemannian manifolds.Math. Z. 245 (2003), 503–527. Zbl 1061.53033, MR 2021568, 10.1007/s00209-003-0549-4
Reference: [10] Simons, J.: On the transitivity of holonomy systems.Ann. of Math. (2) 76 (2) (1962), 213–234. Zbl 0106.15201, MR 0148010, 10.2307/1970273
Reference: [11] Slupinski, M.J.: A Hodge type decomposition for spinor valued forms.Ann. Sci. École Norm. Sup. (4) 29 (1996), 23–48. Zbl 0855.58002, MR 1368704, 10.24033/asens.1734
Reference: [12] Somberg, P.: Killing tensor spinor forms and their application in Riemannian geometry.Hypercomplex analysis and applications, Trends in Mathematics, Birkhauser, 2011, pp. 233–247. Zbl 1215.53020, MR 3026144
Reference: [13] Stein, E.M., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group.Amer. J. Math. 90 (1968), 163–196. Zbl 0157.18303, MR 0223492, 10.2307/2373431
Reference: [14] Tachibana, S.-I., Yu, W.N.: On a Riemannian space admitting more than one Sasakian structures.Tohoku Math. J. (2) 22 (4) (1970), 536–540. Zbl 0213.48301, MR 0275329, 10.2748/tmj/1178242720
Reference: [15] Walker, M., Penrose, R.: On quadratic first integrals of the geodesic equations for type $\lbrace 22\rbrace $ spacetimes.Comm. Math. Phys. 18 (1970), 265–274. MR 0272351, 10.1007/BF01649445
Reference: [16] Yano, K.: Some remarks on tensor fields and curvature.Ann. of Math. (2) 55 (1952), 328–347. Zbl 0046.40002, MR 0048892, 10.2307/1969782
Reference: [17] Zima, P.: (Conformal) Killing spinor valued forms on Riemannian manifolds.Thesis, Charles University in Prague (2014), Available online at: https://is.cuni.cz/webapps/zzp/detail/121806.
.

Files

Files Size Format View
ArchMathRetro_052-2016-5_7.pdf 552.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo