Previous |  Up |  Next

Article

Title: Quantum idempotence, distributivity, and the Yang-Baxter equation (English)
Author: Smith, J. D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 4
Year: 2016
Pages: 567-583
Summary lang: English
.
Category: math
.
Summary: Quantum quasigroups and loops are self-dual objects that provide a general framework for the nonassociative extension of quantum group techniques. They also have one-sided analogues, which are not self-dual. In this paper, natural quantum versions of idempotence and distributivity are specified for these and related structures. Quantum distributive structures furnish solutions to the quantum Yang-Baxter equation. (English)
Keyword: Hopf algebra
Keyword: quantum group
Keyword: quasigroup
Keyword: loop
Keyword: quantum Yang-Baxter equation
Keyword: distributive
MSC: 16T25
MSC: 20N05
idZBL: Zbl 06674898
idMR: MR3583308
DOI: 10.14712/1213-7243.2015.186
.
Date available: 2017-01-09T22:21:36Z
Last updated: 2019-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145943
.
Reference: [1] Benkart G., Madariaga S., Pérez-Izquierdo J.M.: Hopf algebras with triality.Trans. Amer. Math. Soc. 365 (2012), 1001–1023. Zbl 1278.16032, MR 2995381, 10.1090/S0002-9947-2012-05656-X
Reference: [2] Bruck R.H.: Contributions to the theory of loops.Trans. Amer. Math. Soc. 60 (1946), 245–354. Zbl 0061.02201, MR 0017288, 10.1090/S0002-9947-1946-0017288-3
Reference: [3] Chari V., Pressley A.: A Guide to Quantum Groups.Cambridge University Press, Cambridge, 1994. Zbl 0839.17010, MR 1300632
Reference: [4] Davey B.A., Davis G.: Tensor products and entropic varieties.Algebra Universalis 21 (1985), 68–88. Zbl 0604.08004, MR 0835972, 10.1007/BF01187558
Reference: [5] Drinfeld V.G.: On some unsolved problems in quantum group theory.in Quantum Groups (P.P. Kulish, ed.), Lecture Notes in Mathematics, 1510, Springer, Berlin, 1992, pp. 1–8. Zbl 0765.17014, MR 1183473
Reference: [6] Green J.A., Nichols W.D., Taft E.J.: Left Hopf algebras.J. Algebra 65 (1980), 399–411. Zbl 0439.16008, MR 0585730, 10.1016/0021-8693(80)90227-6
Reference: [7] Hofmann K.H., Strambach K.: Idempotent multiplications on surfaces and aspherical spaces.Rocky Mountain J. Math. 21 (1991), 1279–1315. Zbl 0801.57026, MR 1147861, 10.1216/rmjm/1181072908
Reference: [8] Klim J., Majid S.: Hopf quasigroups and the algebraic $7$-sphere.J. Algebra 323 (2010), 3067–3110. MR 2629701, 10.1016/j.jalgebra.2010.03.011
Reference: [9] Klim J., Majid S.: Bicrossproduct Hopf quasigroups.Comment. Math. Univ. Carolin. 51 (2010), 287–304. Zbl 1224.81014, MR 2682482
Reference: [10] Manin Yu.I.: Cubic Forms: Algebra, Geometry, Arithmetic.Nauka, Moscow, 1972 (in Russian). Zbl 0582.14010, MR 0833513
Reference: [11] Nichols W.D., Taft E.J.: The left antipodes of a left Hopf algebra.in Algebraists' Homage (S.A. Amitsur, D.J. Saltman and G.B. Seligman, eds.), Contemporary Mathematics, 13, American Mathematical Society, Providence, RI, 1982, pp. 363–368. Zbl 0501.16013, MR 0685972, 10.1090/conm/013/685972
Reference: [12] Pérez-Izquierdo J.M.: Algebras, hyperalgebras, nonassociative bialgebras and loops.Adv. Math. 208 (2007), 834–876. MR 2304338, 10.1016/j.aim.2006.04.001
Reference: [13] Radford D.E.: Hopf Algebras.World Scientific, Singapore, 2012. Zbl 1266.16036, MR 2894855
Reference: [14] Rodríguez-Romo S., Taft E.J.: A left quantum group.J. Algebra 286 (2005), 154–160. Zbl 1073.16033, MR 2124812, 10.1016/j.jalgebra.2005.01.002
Reference: [15] Smith J.D.H.: An Introduction to Quasigroups and Their Representations.Chapman and Hall/CRC, Boca Raton, FL, 2007. Zbl 1122.20035, MR 2268350
Reference: [16] Smith J.D.H.: One-sided quantum quasigroups and loops.Demonstr. Math. 48 (2015), 620–636; DOI: 10.1515/dema-2015-0043. MR 3430892, 10.1515/dema-2015-0043
Reference: [17] Smith J.D.H.: Quantum quasigroups and loops.J. Algebra 456 (2016), 46–75; DOI: 10.1016/j.jalgebra.2016.02.014. Zbl 1350.20051, MR 3484135, 10.1016/j.jalgebra.2016.02.014
Reference: [18] Smith J.D.H., Romanowska A.B.: Post-Modern Algebra.Wiley, New York, NY, 1999. Zbl 0946.00001, MR 1673047
Reference: [19] Street R.: Quantum Groups.Cambridge University Press, Cambridge, 2007. Zbl 1117.16031, MR 2294803
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-4_10.pdf 311.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo