Previous |  Up |  Next

Article

Title: An introduction to loopoids (English)
Author: Grabowski, Janusz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 4
Year: 2016
Pages: 515-526
Summary lang: English
.
Category: math
.
Summary: We discuss a concept of loopoid as a non-associative generalization of Brandt groupoid. We introduce and study also an interesting class of more general objects which we call semiloopoids. A differential version of loopoids is intended as a framework for Lagrangian discrete mechanics. (English)
Keyword: group
Keyword: Brandt groupoid
Keyword: Lie group
Keyword: loop
Keyword: transversals
Keyword: discrete mechanics
MSC: 20L05
MSC: 20N05
MSC: 22A22
MSC: 22E15
MSC: 22E60
MSC: 58H05
idZBL: Zbl 06674893
idMR: MR3583303
DOI: 10.14712/1213-7243.2015.184
.
Date available: 2017-01-09T22:16:57Z
Last updated: 2019-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145949
.
Reference: [1] Baer R.: Nets and groups.Trans. Amer. Math. Soc. 46 (1939), 110–141. Zbl 0023.21502, MR 0000035, 10.1090/S0002-9947-1939-0000035-5
Reference: [2] Belousov V.D.: Foundations of the Theory of Quasigroups and Loops.Nauka, Moscow, 1967 (in Russian). MR 0218483
Reference: [3] Bruck R.H.: A Survey of Binary Systems.Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 20. Reihe: Gruppentheorie Springer, Berlin-Göttingen-Heidelberg, 1958. Zbl 0141.01401, MR 0093552
Reference: [4] Bruck R.H.: What is a loop.in Studies in modern algebra, Studies in Mathematics, 2, Prentice-Hall, New Jersey, 1963, pp. 59–99. Zbl 0199.05202
Reference: [5] Fedorov Y.N., Zenkov D.V.: Discrete nonholonomic LL systems on Lie groups.Nonlinearity 18 (2005), 2211–2241. Zbl 1084.37049, MR 2164739, 10.1088/0951-7715/18/5/017
Reference: [6] Foguel T.: Groups, transversals, and loops.Loops'99 (Prague), Comment. Math. Univ. Carolin. 41 (2000), 261–269. Zbl 1038.20047, MR 1780870
Reference: [7] Grabowska K., Grabowski J.: Variational calculus with constraints on general algebroids.J. Phys. A 41 (2008), 175204, 25pp. Zbl 1137.70011, MR 2451669, 10.1088/1751-8113/41/17/175204
Reference: [8] Grabowska K., Grabowski J.: Dirac algebroids in Lagrangian and Hamiltonian mechanics.J. Geom. Phys. 61 (2011), 2233–2253. Zbl 1223.37064, MR 2827121, 10.1016/j.geomphys.2011.06.018
Reference: [9] Grabowski J., Jó'zwikowski M.: Pontryagin maximum principle on almost Lie algebroids.SIAM J. Control Optim. 49 (2011), 1306–1357. MR 2818883, 10.1137/090760246
Reference: [10] Grabowski J., de Leon M., Marrero J.C., Martin de Diego D.: Nonholonomic constraints: A new viewpoint.J. Math. Phys. 50 (2009), 013520, 17pp. MR 2492630, 10.1063/1.3049752
Reference: [11] Grabowski J., Urbański P.: Lie algebroids and Poisson-Nijenhis structures.Rep. Math. Phys. 40 (1997), 195–208. MR 1614690, 10.1016/S0034-4877(97)85916-2
Reference: [12] Grabowski J., Urbański P.: Algebroids – general differential calculi on vector bundles.J. Geom. Phys. 31 (1999), 111–141. Zbl 0954.17014, MR 1706624, 10.1016/S0393-0440(99)00007-8
Reference: [13] Grigorian S.: $G_2$-structures and octonion bundles.arXiv:1510.04226.
Reference: [14] Iglesias D., Marrero J.C., Martín de Diego D., Martínez E.: Discrete nonholonomic Lagrangian systems on Lie groupoids.J. Nonlinear Sci. 18 (2008), 221–276. MR 2411379, 10.1007/s00332-007-9012-8
Reference: [15] Iglesias D., Marrero J.C., Martín de Diego D., Padrón E.: Discrete nonholonomic in implicit form.Discrete Contin. Dyn. Syst. 33 (2013), 1117–1135. MR 2988938, 10.3934/dcds.2013.33.1117
Reference: [16] Kinyon M.: The coquecigrue of a Leibniz algebra.preprint, 2003.
Reference: [17] Kinyon M., Weinstein A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces.Amer. J. Math. 123 (2001), 525–550. Zbl 0986.17001, MR 1833152, 10.1353/ajm.2001.0017
Reference: [18] Mackenzie K.: General Theory of Lie Groupoids and Lie Algebroids.London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005. Zbl 1078.58011, MR 2157566
Reference: [19] Marrero J.C., Martín de Diego D., Martínez E.: Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids.Nonlinearity 19 (2006), 1313–1348. Corrigendum: Nonlinearity 19 (2006), 3003–3004. MR 2230001, 10.1088/0951-7715/19/6/006
Reference: [20] Marrero J.C., Martín de Diego, Stern A.: Symplectic groupoids and discrete constrained Lagrangian mechanics.Discrete Contin. Dyn. Syst. 35 (2015), 367–397. MR 3286963
Reference: [21] Martínez E.: Lagrangian mechanics on Lie algebroids,.Acta Appl. Math. 67 (2001), 295–320. Zbl 1002.70013, MR 1861135, 10.1023/A:1011965919259
Reference: [22] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [23] Sabinin L.V.: Smooth Quasigroups and Loops.Kluwer Academic Press, Dordrecht, 1999. Zbl 1038.20051, MR 1727714
Reference: [24] Sabinin L.V.: Smooth quasigroups and loops: forty-five years of incredible growth.Comment. Math. Univ. Carolin. 41 (2000), 377–400. Zbl 1038.20051, MR 1780879
Reference: [25] Smith J.D.H.: Loops and quasigroups: Aspects of current work and prospects for the future.Comment. Math. Univ. Carolin. 41 (2000), 415–427. Zbl 1038.20055, MR 1780883
Reference: [26] Stern A.: Discrete Hamilton–Pontryagin mechanics and generating functions on Lie groupoids.J. Symplectic Geom. 8 (2010), 225–238. MR 2670166, 10.4310/JSG.2010.v8.n2.a5
Reference: [27] Weinstein A.: Lagrangian mechanics and groupoids.{Fields Inst. Comm.} 7 (1996), 207–231. Zbl 0844.22007, MR 1365779
Reference: [28] Zakrzewski S.: Quantum and classical pseudogroups I. Union pseudogroups and their quantization.Comm. Math. Phys. 134 (1990), 347–370. Zbl 0708.58030, MR 1081010, 10.1007/BF02097706
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-4_5.pdf 276.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo