Previous |  Up |  Next

Article

Title: On approximation of stability radius for an infinite-dimensional feedback control system (English)
Author: Sano, Hideki
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 824-835
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss the problem of approximating stability radius appearing in the design procedure of finite-dimensional stabilizing controllers for an infinite-dimensional dynamical system. The calculation of stability radius needs the value of $H_\infty$-norm of a transfer function whose realization is described by infinite-dimensional operators in a Hilbert space. From the computational point of view, we need to prepare a family of approximate finite-dimensional operators and then to calculate the $H_\infty$-norm of their transfer functions. However, it is not assured that they converge to the value of $H_\infty$-norm of the original transfer function. The purpose of this study is to justify the convergence. In a numerical example, we treat parabolic distributed parameter systems with distributed control and distributed/boundary observation. (English)
Keyword: distributed parameter system
Keyword: finite-dimensional controller
Keyword: stability radius
Keyword: transfer function
Keyword: semigroup
MSC: 93C25
MSC: 93D15
idZBL: Zbl 06674941
idMR: MR3602017
DOI: 10.14736/kyb-2016-5-0824
.
Date available: 2017-01-02T13:33:24Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145970
.
Reference: [1] Balas, M. J.: Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters..J. Math. Anal. Appl. 133 (1988), 283-296. Zbl 0647.93036, MR 0954706, 10.1016/0022-247x(88)90401-5
Reference: [2] Chicone, C., Latushkin, Y.: Evolution Semigroups in Dynamical Systems and Differential Equations..Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, 1999. Zbl 0970.47027, MR 1707332, 10.1090/surv/070
Reference: [3] Curtain, R. F.: Finite dimensional compensators for parabolic distributed systems with unbounded control and observation..SIAM J. Control Optim. 22 (1984), 255-276. Zbl 0542.93056, MR 0732427, 10.1137/0322018
Reference: [4] Glowinski, R., Lions, J.-L., He, J.: Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach..In: Encyclopedia of Mathematics and Its Applications, vol. 117. Cambridge University Press, Cambridge 2008. Zbl 1142.93002, MR 2404764
Reference: [5] Jai, A. El, Pritchard, A. J.: Sensors and Controls in the Analysis of Distributed Systems. English Language Edition..Ellis Horwood Limited, Chichester 1988. MR 0933327
Reference: [6] Guglielmi, N., Manetta, M.: Approximating real stability radii..IMA J. Numerical Analysis 35 (2015), 1402-1425. Zbl 1328.65168, MR 3407266, 10.1093/imanum/dru038
Reference: [7] Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories I: Abstract Parabolic Systems..In: Encyclopedia of Mathematics and Its Applications, vol. 74. Cambridge University Press, Cambridge 2000. MR 1745475, 10.1017/cbo9780511574801
Reference: [8] Nambu, T.: On stabilization of partial differential equations of parabolic type: boundary observation and feedback..Funkcialaj Ekvacioj, Serio Internacia 28 (1985), 267-298. Zbl 0614.93049, MR 0852115
Reference: [9] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations..In: Applied Mathematical Sciences, vol. 44. Springer-Verlag, New York 1983. Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [10] Pritchard, A. J., Townley, S.: Robust compensator design via structured stability radii..Systems Control Lett. 11 (1988), 33-37. Zbl 0648.93047, MR 0949887, 10.1016/0167-6911(88)90108-9
Reference: [11] Pritchard, A. J., Townley, S.: Robustness of linear systems..J. Differential Equations 77 (1989), 254-286. Zbl 0674.34061, MR 0983295, 10.1016/0022-0396(89)90144-7
Reference: [12] Sakawa, Y.: Feedback stabilization of linear diffusion systems..SIAM J. Control Optim. 21 (1983), 667-676. Zbl 0527.93050, MR 0710993, 10.1137/0321040
Reference: [13] Sano, H., Kunimatsu, N.: Feedback stabilization of infinite-dimensional systems with $A^{\gamma}$-bounded output operators..Appl. Math. Lett. 7 (1994), 5, 17-22. MR 1350603, 10.1016/0893-9659(94)90065-5
Reference: [14] Sano, H.: Finite-dimensional $H_{\infty}$ control of linear parabolic systems with unbounded output operators..Int. J. Control 72 (1999), 16, 1466-1479. MR 1723338, 10.1080/002071799220119
Reference: [15] Sano, H.: Stability-enhancing control of a coupled transport-diffusion system with Dirichlet actuation and Dirichlet measurement..J. Math. Anal. Appl. 388 (2012), 1194-1204. Zbl 1243.35166, MR 2869818, 10.1016/j.jmaa.2011.11.011
Reference: [16] Schumacher, J. M.: A direct approach to compensator design for distributed parameter systems..SIAM J. Control Optim. 21 (1983), 823-836. Zbl 0524.93054, MR 0719515, 10.1137/0321050
Reference: [17] Zhou, K., Doyle, J., Glover, K.: Robust and Optimal Control. (In Japanese, translated from the English by K. Z. Liu and Z. H. Luo.).Corona, Tokyo 1997.
.

Files

Files Size Format View
Kybernetika_52-2016-5_9.pdf 374.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo