Previous |  Up |  Next

Article

Title: Averaging approach to distributed convex optimization for continuous-time multi-agent systems (English)
Author: Ni, Wei
Author: Wang, Xiaoli
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 6
Year: 2016
Pages: 898-913
Summary lang: English
.
Category: math
.
Summary: Recently, distributed convex optimization has received much attention by many researchers. Current research on this problem mainly focuses on fixed network topologies, without enough attention to switching ones. This paper specially establishes a new technique called averaging-base approach to design a continuous-time distributed algorithm for convex optimization problem under switching topology. This idea of using averaging was proposed in our earlier works for the consensus problem of multi-agent systems under switching topology, and it is further developed in this paper to gain further insight into the distributed optimization algorithm. Key techniques are used, such as two-time-scale analysis and asymptotic expansions for the solutions of the backward equation or Liouvill equation. Important results are obtained, including weak convergence of our algorithm to the optimal solution. (English)
Keyword: distributed convex optimization
Keyword: averaging approach
Keyword: two-time-scale
Keyword: Markovian switching
Keyword: invariant measure
MSC: 93C15
MSC: 93C35
idZBL: Zbl 06707379
idMR: MR3607853
DOI: 10.14736/kyb-2016-6-0898
.
Date available: 2017-02-13T11:43:07Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145996
.
Reference: [1] Bertsekas, D. P., Tsitsiklis, J. N.: Neuro-Dynamic Programming..Athena Scientific, Belmont 1996. Zbl 0924.68163
Reference: [2] Boyd, S., Vandenberghe, L.: Convex Optimization..Cambridge University Press, 2004. Zbl 1058.90049, MR 2061575, 10.1017/cbo9780511804441
Reference: [3] Evans, L. C.: Partial Differential Equations. Second edition..American Math Society, 2010. MR 2597943
Reference: [4] Feijer, D., Paganini, F.: Stability of primal-dual gradient dynamics and applications to network optimization..Automatica 46 (2010), 1974-1981. Zbl 1205.93138, MR 2878220, 10.1016/j.automatica.2010.08.011
Reference: [5] Freedman, D.: Markov Chains..Springer-Verlag, New York 1983. Zbl 1343.60114, MR 0686269, 10.1007/978-1-4612-5500-0
Reference: [6] Gharesifard, B., Cortes, J.: Distributed continuous-time convex optimization on weight-balanced digraphs..IEEE Trans. Automat. Control 59 (2014), 781-786. MR 3188487, 10.1109/tac.2013.2278132
Reference: [7] Golshtein, F. G., Yakov, N. V.: Modified Lagrangians and Moonotone Maps in Optimization..Wiley, New York 1996. MR 1386892
Reference: [8] Kushner, K. J.: Approximation and Weak Convergence Methods for Random Processes with Applications to Stochastic Systems Theory..The MIT Press, London 1984. Zbl 0551.60056, MR 0741469
Reference: [9] Liu, S., Qiu, Z., Xie, L.: Continuous-time distributed convex optimization with set constraints..In: Proc. 19th IFAC World Congress, Cape Town 2014, pp. 9762-9767. 10.3182/20140824-6-za-1003.01377
Reference: [10] Liu, Q., Wang, J.: A second-order multi-agent network for bounded-constrained distributed optimization..IEEE Trans. Automat. Control 60 (2015), 3310-3315. MR 3432700, 10.1109/TAC.2015.2416927
Reference: [11] Lou, Y., Hong, Y., Wang, S.: Distributed continuous-time approximate projection protocols for shortest distance optimization problems..Automatica 69 (2016), 289-297. Zbl 1338.93026, MR 3500113, 10.1016/j.automatica.2016.02.019
Reference: [12] Lu, J., Tang, C. Y.: Zero-gradient-sum algorithms for distributed convex: the continuous-time case..IEEE Trans. Automat. Control 57 (2012), 2348-2354. MR 2968790, 10.1109/tac.2012.2184199
Reference: [13] Mateos-Nunez, D., Cortes, J.: Noise-to-state exponential stable distributed convex optimization on weight-balanced digraphs..SIAM J.n Control Optim. 54 (2016), 266-290. MR 3458152, 10.1137/140978259
Reference: [14] Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization..IEEE Trans. Automat. Control 54 (2009), 48-61. MR 2478070, 10.1109/tac.2008.2009515
Reference: [15] Nedic, A., Ozdaglar, A., Parrilo, P. A.: Constained consensus and optimization in multi-agent networks..IEEE Trans. Automat. Control 55 (2010), 922-938. MR 2654432, 10.1109/tac.2010.2041686
Reference: [16] Pavliotis, G. V., Stuart, A. M.: Multiscale methods: averaging and homogenization..Springer-Verlag, New York 2008. Zbl 1160.35006, MR 2382139
Reference: [17] Ni, W., Wang, Xiaoli, Xiong, Chun: Leader-following consensus of multiple linear systems under switching topologies: an averaging method..Kybernetika 48 (2012), 1194-1210. Zbl 1255.93069, MR 3052881
Reference: [18] Ni, W., Wang, X., Xiong, C.: Consensus controllability, observability and robust design for leader-following linear multi-agent systems..Automatica 49 (2013), 2199-2205. MR 3063077, 10.1016/j.automatica.2013.03.028
Reference: [19] Ni, W., Zhao, D., Ni, Y., Wang, X.: Stochastic averaging approach to leader-following consensus of linear multi-agent systems..J. Franklin Inst. 353 (2016), 2650-2669. Zbl 1347.93024, MR 3513740, 10.1016/j.jfranklin.2016.05.020
Reference: [20] Nowak, R. D.: Distributed EM algorithms for density estimation and clustering in sensor networks..IEEE Trans. Signal Process. 51 (2003), 2245-2253. 10.1109/tsp.2003.814623
Reference: [21] Tanabe, K.: A geometric method in nonlinear programming..J. Optim. Theory Appll. 30 (1980), 181-210. Zbl 0396.90078, MR 0560950, 10.1007/bf00934495
Reference: [22] Touri, B., Gharesifard, B.: Continuous-time distributed convex optimization on time-varying directed networks..In: 54th IEEE Conference on Decision and Control, Osaka 2015, pp. 724-729. 10.1109/cdc.2015.7402315
Reference: [23] Wang, J., Elia, N.: Control approach to distributed optimization..In: 48th Annual Allerton Conference on Communication, Control, and Computing 2010, pp. 557-561. 10.1109/allerton.2010.5706956
Reference: [24] Wang, J., Elia, N.: A control perspective for centralized and distributed convex optimization..In: 50th IEEE Conference on Decision and Control and European Control Conference, Orlando 2011, pp. 3800-3805.
Reference: [25] Wang, X., Yi, P., Hong, Y.: Dynamic optimization for multi-agent systems with external disturbances..Control Theory Technol. 12 (2014), 132-138. MR 3199533, 10.1007/s11768-014-0036-y
Reference: [26] Yi, P., Zhang, Y., Hong, Y.: Potential game design for a class of distributed optimisation problems..J. Control Decision 1 (2014), 166-179. 10.1080/23307706.2014.899111
Reference: [27] Yi, P., Hong, Y., Liu, F.: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems..Systems Control Lett. 83 (2015), 45-52. Zbl 1327.93033, MR 3373270, 10.1016/j.sysconle.2015.06.006
Reference: [28] Yi, P., Hong, Y., Liu, F.: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems..Automatica 74 (2016), 259-269. MR 3569392, 10.1016/j.automatica.2016.08.007
Reference: [29] Zeng, X., Yi, P., Hong, Y.: Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach..arXiv:1510.07386v2, 2016.
.

Files

Files Size Format View
Kybernetika_52-2016-6_4.pdf 483.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo