Previous |  Up |  Next

Article

Title: Several quantitative characterizations of some specific groups (English)
Author: Mohammadzadeh, A.
Author: Moghaddamfar, A. R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 19-34
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group and let $\pi(G)=\{p_1, p_2,\ldots, p_k\}$ be the set of prime divisors of $|G|$ for which $p_1< p_2< \cdots < p_k$. The Gruenberg-Kegel graph of $G$, denoted $\operatorname{GK} (G)$, is defined as follows: its vertex set is $\pi(G)$ and two different vertices $p_i$ and $p_j$ are adjacent by an edge if and only if $G$ contains an element of order $p_i p_j$. The degree of a vertex $p_i$ in ${\rm GK}(G)$ is denoted by $d_G(p_i)$ and the $k$-tuple $D(G)= (d_G(p_1), d_G(p_2),\ldots, d_G(p_k))$ is said to be the degree pattern of $G$. Moreover, if $\omega \subseteq \pi(G)$ is the vertex set of a connected component of $\operatorname{GK} (G)$, then the largest $\omega$-number which divides $|G|$, is said to be an order component of $\operatorname{GK} (G)$. We will say that the problem of OD-characterization is solved for a finite group if we find the number of pairwise non-isomorphic finite groups with the same order and degree pattern as the group under study. The purpose of this article is twofold. First, we completely solve the problem of OD-characterization for every finite non-abelian simple group with orders having prime divisors at most 29. In particular, we show that there are exactly two non-isomorphic finite groups with the same order and degree pattern as $U_4(2)$. Second, we prove that there are exactly two non-isomorphic finite groups with the same order components as $U_5(2)$. (English)
Keyword: OD-characterization of finite group
Keyword: prime graph
Keyword: degree pattern
Keyword: simple group
Keyword: $2$-Frobenius group
MSC: 20D05
MSC: 20D06
MSC: 20D08
idZBL: Zbl 06736741
idMR: MR3631678
DOI: 10.14712/1213-7243.2015.194
.
Date available: 2017-03-12T16:35:11Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146025
.
Reference: [1] Akbari B., Moghaddamfar A.R.: Recognizing by order and degree pattern of some projective special linear groups.Internat. J. Algebra Comput. 22 (2012), no. 6, 1250051, 22 pages. Zbl 1266.20037, MR 2974105, 10.1142/S0218196712500518
Reference: [2] Akbari B., Moghaddamfar A.R.: On recognition by order and degree pattern of finite simple groups.Southeast Asian Bull. Math. 39 (2015), no. 2, 163–172. Zbl 1340.20031, MR 3363927
Reference: [3] Akbari B., Moghaddamfar A.R.: OD-characterization of certain four dimensional linear groups with related results concerning degree patterns.Front. Math. China 10 (2015), no. 1, 1–31. Zbl 1321.20024, MR 3284941, 10.1007/s11464-014-0430-2
Reference: [4] Akbari B., Moghaddamfar A.R.: Simple groups which are $2$-fold OD-characterizable.Bull. Malays. Math. Sci. Soc. 35 (2012), no. 1, 65–77. Zbl 1241.20020, MR 2865121
Reference: [5] Akbari M., Moghaddamfar A.R., Rahbariyan S.: A characterization of some finite simple groups through their orders and degree patterns.Algebra Colloq. 19 (2012), no. 3, 473–482. Zbl 1250.20010, MR 2999256, 10.1142/S1005386712000338
Reference: [6] Alavi S.H, Daneshkhah A.: A new characterization of alternating and symmetric groups.J. Appl. Math. Comput. 17 (2005), no. 1–2, 245–258. Zbl 1066.20012, MR 2108803, 10.1007/BF02936052
Reference: [7] Chen G.Y.: A new characterization of sporadic simple groups.Algebra Colloq. 3 (1996), no. 1, 49–58. Zbl 1332.20012, MR 1374160
Reference: [8] Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A.: Atlas of Finite Groups.Clarendon Press, Oxford, 1985. Zbl 0568.20001, MR 0827219
Reference: [9] Hoseini A.A., Moghaddamfar A.R.: Recognizing alternating groups $A_{p+3}$ for certain primes $p$ by their orders and degree patterns.Front. Math. China 5 (2010), no. 3, 541–553. Zbl 1205.20029, MR 2660528, 10.1007/s11464-010-0011-y
Reference: [10] Iranmanesh A., Alavi S.H., Khosravi B.: A characterization of $ PSL(3,q)$ where $q$ is an odd prime power.J. Pure Appl. Algebra 170 (2002), no. 2–3, 243–254. Zbl 1001.20005, MR 1904845, 10.1016/S0022-4049(01)00113-X
Reference: [11] Iranmanesh A., Khosravi B.: A characterization of $C_2 (q)$ where $q>5$.Comment. Math. Univ. Carolin. 43 (2002), no. 1, 9–21. Zbl 1068.20020, MR 1903303
Reference: [12] Khosravi A., Khosravi B.: $r$-recognizability of $B_n(q)$ and $C_n(q)$ where $n=2^m\geqslant 4$.J. Pure Appl. Algebra 199 (2005), no. 1–3, 149–165. Zbl 1076.20008, MR 2134298
Reference: [13] Khosravi B.: Some characterizations of $L_9 (2)$ related to its prime graph.Publ. Math. Debrecen 75 (2009), no. 3–4, 375–385. Zbl 1207.20008, MR 2588212
Reference: [14] Khosravi Beh., Khosravi Bah.: A characterization of ${\sp 2E}_6 (q)$.Kumamoto J. Math. 16 (2003), 1–11. MR 1975291
Reference: [15] Kogani-Moghaddam R., Moghaddamfar A.R.: Groups with the same order and degree pattern.Sci. China Math. 55 (2012), no. 4, 701–720. Zbl 1252.20010, MR 2903455, 10.1007/s11425-011-4314-6
Reference: [16] Kondrat'ev A.S.: On prime graph components of finite simple groups.Math. Sb. 180 (1989), no. 6, 787–797. Zbl 0691.20013, MR 1015040
Reference: [17] Lucido M.S., Moghaddamfar A.R.: Groups with complete prime graph connected components.J. Group Theory 7 (2004), no. 3, 373–384. Zbl 1058.20014, MR 2063403, 10.1515/jgth.2004.013
Reference: [18] Mazurov V.D.: Recognition of the finite simple groups $S_4 (q)$ by their element orders.Algebra Logic 41 (2002), no. 2, 93–110. Zbl 1067.20016, MR 1922988, 10.1023/A:1015356614025
Reference: [19] Mazurov V.D., Chen G.Y.: Recognizability of the finite simple groups $L_4(2^m)$ and $U\sb 4(2\sp m)$ by the spectrum.Algebra Logic 47 (2008), no. 1, 49–55. MR 2408572, 10.1007/s10469-008-0005-y
Reference: [20] Moghaddamfar A.R.: A comparison of the order components in Frobenius and $2$-Frobenius groups with finite simple groups.Taiwanese J. Math. 13 (2009), no. 1, 67–89. Zbl 1230.20013, MR 2489308, 10.11650/twjm/1500405273
Reference: [21] Moghaddamfar A.R.: Recognizability of finite groups by order and degree pattern.Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 422–433. Zbl 1264.20028, MR 2905667
Reference: [22] Moghaddamfar A.R.: On alternating and symmetric groups which are quasi OD-characterizable.J. Algebra Appl., 16 (2017), no. 2, 1750065, 14 pp. 10.1142/S0219498817500657
Reference: [23] Moghaddamfar A.R., Darafsheh M.R.: A family of finite simple groups which are $2$-recognizable by their elements order.Comm. Algebra 32 (2004), no. 11, 4507–4513. Zbl 1071.20019, MR 2102462, 10.1081/AGB-200037717
Reference: [24] Moghaddamfar A.R., Rahbarian S.: More on the OD-characterizability of a finite group.Algebra Colloq. 18 (2011), 663–674. MR 2837003
Reference: [25] Moghaddamfar A.R., Rahbariyan S.: A quantitative characterization of some finite simple groups through order and degree pattern.Note Mat. 34 (2014), no. 2, 91–105. Zbl 1316.20024, MR 3315986
Reference: [26] Moghaddamfar A.R., Rahbarian S.: OD-characterization of some projective special linear groups over the binary field and their automorphism groups.Comm. Algebra 43 (2015), no. 6, 2308–2334. MR 3344192, 10.1080/00927872.2014.891605
Reference: [27] Moghaddamfar A.R., Zokayi A.R.: Recognizing finite group through order and degree pattern.Algebra Colloq. 15 (2008), no. 3, 449–456. MR 2441479, 10.1142/S1005386708000424
Reference: [28] Moghaddamfar A.R., Zokayi A.R.: OD-characterization of alternating and symmetric groups of degree $16$ and $22$.Front. Math. China 4 (2009), 669–680. MR 2563648, 10.1007/s11464-009-0037-1
Reference: [29] Moghaddamfar A.R., Zokayi A.R.: OD-characterization of certain finite groups having connected prime graphs.Algebra Colloq. 17 (2010), no. 1, 121–130. Zbl 1191.20020, MR 2589751, 10.1142/S1005386710000143
Reference: [30] Moghaddamfar A.R., Zokayi A.R., Darafsheh M.R.: A characterization of finite simple groups by the degrees of vertices of their prime graphs.Algebra Colloq. 12 (2005), no. 3, 431–442. Zbl 1072.20015, MR 2144997, 10.1142/S1005386705000398
Reference: [31] Shao C., Shi W., Wang L., Zhang L.: OD-characterization of $\mathbb A_{16}$.Journal of Suzhou University (Natural Science Edition) 24 (2008), 7–10.
Reference: [32] Shao C., Shi W., Wang L., Zhang L.: OD-characterization of the simple group $L_3(9)$.Journal of Guangxi University (Natural Science Edition) 34 (2009), 120–122. Zbl 1212.20054
Reference: [33] Shi W., Zhang L.: OD-characterization of all simple groups whose orders are less than $10^8$.Front. Math. China 3 (2008), 461–474. Zbl 1165.20010, MR 2425165, 10.1007/s11464-008-0026-9
Reference: [34] Suzuki M.: Group Theory I.Springer, Berlin-New York, 1982. Zbl 0472.20001, MR 0648772
Reference: [35] Vasil'ev A.V., Gorshkov I.B.: On the recognition of finite simple groups with a connected prime graph.Sib. Math. J. 50 (2009), 233–238. MR 2531755, 10.1007/s11202-009-0027-2
Reference: [36] Williams J.S.: Prime graph components of finite groups.J. Algebra 69 (1981), no. 2, 487–513. Zbl 0471.20013, MR 0617092, 10.1016/0021-8693(81)90218-0
Reference: [37] Yan Y., Chen G.Y.: OD-characterization of alternating and symmetric groups of degree $106$ and $112$.Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, pp. 690–696. Zbl 1263.20013, MR 2905690
Reference: [38] Yan Y., Chen G.Y., Zhang L.C., Xu H.: Recognizing finite groups through order and degree patterns.Chin. Ann. Math. Ser. B 34 (2013), no. 5, 777–790. MR 3079810, 10.1007/s11401-013-0787-7
Reference: [39] Zavarnitsine A.V.: Exceptional action of the simple groups $ L_4 (q)$ in the defining characteristic.Sib. Elektron. Mat. Izv. 5 (2008), 68–74. Zbl 1289.20059, MR 2586623
Reference: [40] Zavarnitsine A.V.: Finite simple groups with narrow prime spectrum.Sib. Elektron. Mat. Izv. 6 (2009), 1–12. Zbl 1289.20021, MR 2586673
Reference: [41] Zhang L., Shi W.: OD-characterization of simple $K_4$-groups.Algebra Colloq. 16 (2009), 275–282. Zbl 1182.20013, MR 2503250, 10.1142/S1005386709000273
Reference: [42] Zhang L., Shi W.: OD-characterization of almost simple groups related to $U\sb 6(2)$.Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), no. 2, 441–450. MR 2817102
Reference: [43] Zhang L., Shi W.: OD-characterization of the projective special linear groups $L_2(q)$.Algebra Colloq. 19 (2012), no. 3, 509–524. Zbl 1257.20012, MR 2999260
Reference: [44] Zinov'eva M.R., Kondrat'ev A.S.: An example of a double Frobenius group with order components as in the simple group $S_4 (3)$.Vladikavkaz. Mat. Zh. 10 (2008), no. 1, 35–36 (Russian). Zbl 1324.20008, MR 2434651
Reference: [45] Zinov'eva M.R., Mazurov V.D.: On finite groups with disconnected prime graph.Proceedings of the Steklov Institute of Mathematics 283 (2013), no. 1, 139–145. Zbl 1307.20023, MR 3476387
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_3.pdf 355.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo