Previous |  Up |  Next

Article

Title: A note on the adaptive estimation of the differential entropy by wavelet methods (English)
Author: Chesneau, Christophe
Author: Navarro, Fabien
Author: Serea, Oana Silvia
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 87-100
Summary lang: English
.
Category: math
.
Summary: In this note we consider the estimation of the differential entropy of a probability density function. We propose a new adaptive estimator based on a plug-in approach and wavelet methods. Under the mean $\mathbb{L}_p$ error, $p\ge 1$, this estimator attains fast rates of convergence for a wide class of functions. We present simulation results in order to support our theoretical findings. (English)
Keyword: entropy
Keyword: wavelet estimation
Keyword: rate of convergence
Keyword: mean $\mathbb{L}_p$ error
MSC: 62G07
MSC: 62G20
idZBL: Zbl 06736746
idMR: MR3631683
DOI: 10.14712/1213-7243.2015.191
.
Date available: 2017-03-12T16:41:49Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146030
.
Reference: [Antoniadis (1997)] Antoniadis A.: Wavelets in statistics: a review (with discussion).J. Ital. Statist. Soc. Series B 6 (1997), 97–144. 10.1007/BF03178905
Reference: [Beirlant {\it et al.} (1997)] Beirlant J., Dudewicz E.J., Gyorfi L., van der Meulen E.C.: Nonparametric entropy estimation: an overview.Int. J. Math. Stat. Sci. 6 (1997), 17–39. Zbl 0882.62003, MR 1471870
Reference: [Bouzebda and Elhattab (2009)] Bouzebda S., Elhattab I.: A strong consistency of a nonparametric estimate of entropy under random censorship.C.R. Math. Acad. Sci. Paris 347 (2009), no. 13–14, 821–826. Zbl 1167.62410, MR 2543991, 10.1016/j.crma.2009.04.021
Reference: [Bouzebda and Elhattab (2010)] Bouzebda S., Elhattab I.: Uniform in bandwidth consistency of the kernel-type estimator of the Shannon's entropy.C.R. Math. Acad. Sci. Paris 348 (2010), no. 5–6, 317–321. Zbl 1185.62072, MR 2600131, 10.1016/j.crma.2009.12.007
Reference: [Bouzebda and Elhattab (2011)] Bouzebda S., Elhattab I.: Uniform-in-bandwidth consistency for kernel-type estimators of Shannon's entropy.Electron. J. Stat. 5 (2011), 440–459. Zbl 1274.62186, MR 2802051, 10.1214/11-EJS614
Reference: [Caroll and Hall (1988)] Caroll R.J., Hall P.: Optimal rates of convergence for deconvolving a density.J. Amer. Statist. Assoc. 83 (1988), 1184–1186. MR 0997599, 10.1080/01621459.1988.10478718
Reference: [Cohen {\it et al.} (1993)] Cohen A., Daubechies I., Vial P.: Wavelets on the interval and fast wavelet transforms.Appl. Comput. Harmon. Anal. 24 (1993), no. 1, 54–81. Zbl 0795.42018, MR 1256527, 10.1006/acha.1993.1005
Reference: [Daubechies (1992)] Daubechies I.: Ten Lectures on Wavelets.SIAM, Philadelphia, PA, 1992. Zbl 1006.42030, MR 1162107
Reference: [Delyon and Juditsky (1996)] Delyon B., Juditsky A.: On minimax wavelet estimators.Appl. Comput. Harmon. Anal. 3 (1996), 215–228. Zbl 0865.62023, MR 1400080, 10.1006/acha.1996.0017
Reference: [Devroye (1989)] Devroye L.: Consistent deconvolution in density estimation.Canad. J. Statist. 17 (1989), 235–239. Zbl 0679.62029, MR 1033106, 10.2307/3314852
Reference: [Dmitriev and Tarasenko (1973)] Dmitriev Yu.G., Tarasenko F.P.: On the estimation functions of the probability density and its derivatives.Theory Probab. Appl. 18 (1973), 628–633. MR 0359157
Reference: [Donoho {\it et al.} (1996)] Donoho D.L., Johnstone I.M., Kerkyacharian G., Picard D.: Density estimation by wavelet thresholding.Ann. Statist. 24 (1996), 508–539. Zbl 0860.62032, MR 1394974, 10.1214/aos/1032894451
Reference: [Fan (1991)] Fan J.: On the optimal rates of convergence for nonparametric deconvolution problem.Ann. Statist. 19 (1991), 1257–1272. MR 1126324, 10.1214/aos/1176348248
Reference: [Györfi and van der Meulen (1990)] Györfi L., van der Meulen E.C.: An entropy estimate based on a kernel density estimation.in Limit theorems in probability and kernel-type estimators of Shannon's entropy statistics (Pécs, 1989), Colloq. Math. Soc. János Bolyai, 57, North-Holland, Amsterdam, 1990, pp. 229-240. Zbl 0724.62038, MR 1116790
Reference: [Györfi and van der Meulen (1991)] Györfi L., van der Meulen E.C.: On the nonparametric estimation of the entropy functional.in Nonparametric functional estimation and related topics (Spetses, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 335, Kluwer Acad. Publ., Dordrecht, 1991, pp. 81–95. Zbl 0739.62029, MR 1154321
Reference: [Härdle {\it et al.} (1998)] Härdle W., Kerkyacharian G., Picard D., Tsybakov A.: Wavelet, Approximation and Statistical Applications.Lectures Notes in Statistics, 129, Springer, New York, 1998. MR 1618204, 10.1007/978-1-4612-2222-4
Reference: [Joe (1989)] Joe H.: Estimation of entropy and other functionals of a multivariate density.Ann. Inst. Statist. Math. 41 (1989), no. 4, 683–697. Zbl 0698.62042, MR 1039399, 10.1007/BF00057735
Reference: [Kerkyacharian and Picard (2000)] Kerkyacharian G., Picard D.: Thresholding algorithms, maxisets and well concentrated bases. With comments and a rejoinder by the authors.Test 9 (2000), no. 2, 283–345. MR 1821645, 10.1007/BF02595738
Reference: [Mallat (2009)] Mallat S.: A Wavelet Tour of Signal Processing. The sparse way.third edition, with contributions from Gabriel Peyré, Elsevier/Academic Press, Amsterdam, 2009. Zbl 1170.94003, MR 2479996
Reference: [Mason (2003)] Mason D.M.: Representations for integral functionals of kernel density estimators.Austr. J. Stat. 32 (2003), no. 1–2, 131–142.
Reference: [Meyer (1992)] Meyer Y.: Wavelets and Operators.Cambridge University Press, Cambridge, 1992. Zbl 0819.42016, MR 1228209
Reference: [Mokkadem (1989)] Mokkadem A.: Estimation of the entropy and information for absolutely continuous random variables.IEEE Trans. Inform. Theory 35 (1989), 193–196. MR 0995340, 10.1109/18.42194
Reference: [Prakasa Rao (1983)] Prakasa Rao B.L.S.: Nonparametric Functional Estimation.Academic Press, Orlando, 1983. Zbl 1069.62519, MR 0740865
Reference: [Shannon (1948)] Shannon C.E.: A mathematical theory of communication.Bell System Tech. J. 27 (1948), 379–423, 623–656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [Silverman (1986)] Silverman B.W.: Density estimation: for statistics and data analysis.Chapman & Hall, London, 1986. Zbl 0617.62042, MR 0848134
Reference: [Tsybakov (2004)] Tsybakov A.: Introduction à l'estimation nonparamétrique.Springer, Berlin, 2004. MR 2013911
Reference: [Vidakovic (1999)] Vidakovic B.: Statistical Modeling by Wavelets.John Wiley & Sons, Inc., New York, 1999, 384 pp. Zbl 0924.62032, MR 1681904
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_8.pdf 364.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo