Previous |  Up |  Next

Article

Title: The Regularization of the Second Order Lagrangians in Example (English)
Author: Smetanová, Dana
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 2
Year: 2016
Pages: 157-165
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to geometric formulation of the regular (resp. strongly regular) Hamiltonian system. The notion of the regularization of the second order Lagrangians is presented. The regularization procedure is applied to concrete example. (English)
Keyword: Hamilton extremals
Keyword: Dedecker–Hamilton extremals
Keyword: Hamilton equations
Keyword: Lagrangian
Keyword: Lepagean equivalents
Keyword: Poincaré–Cartan form
Keyword: regular and strongly regular systems
MSC: 35R01
MSC: 49S05
MSC: 53Z05
idZBL: Zbl 1369.49070
.
Date available: 2017-03-16T12:54:06Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146068
.
Reference: [1] Dedecker, P.: On the generalization of symplectic geometry to multiple integrals in the calculus of variations.. In: Lecture Notes in Math., 570, Springer, Berlin, 1977, 395–456. Zbl 0352.49018, MR 0458478
Reference: [2] Gotay, M. J.: A multisymplectic framework for classical field theory and the calculus of variations, I. covariant Hamiltonian formalism.. In: M., Francaviglia, D. D., Holm (eds.): Mechanics, Analysis and Geometry: 200 Years After Lagrange, North-Holland, Amsterdam, 1990, 203–235.
Reference: [3] Krupka, D.: Some geometric aspects of variational problems in fibered manifolds.. Folia Fac. Sci. Nat. 14 (1973), 1–65.
Reference: [4] Krupka, D.: Lepagean forms in higher order variational theory.. In: S., Benenti, M., Francaviglia, A., Lichnerowitz (eds.): Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Proc. IUTAM-ISIM Symp., Accad. delle Scienze di Torino, Torino, 1983, 197–238. Zbl 0572.58003, MR 0773488
Reference: [5] Krupková, O.: Hamiltonian field theory.. J. Geom. Phys. 43 (2002), 93–132. Zbl 1016.37033, MR 1919207, 10.1016/S0393-0440(01)00087-0
Reference: [6] Krupková, O.: Hamiltonian field theory revisited: A geometric approach to regularity.. In: Steps in Differential Geometry, Proc. of the Coll. on Diff. Geom., University of Debrecen, Debrecen, 2001, 187–207. Zbl 0980.35009, MR 1859298
Reference: [7] Krupková, O., Smetanová, D.: Legendre transformation for regularizable Lagrangians in field theory.. Letters in Math. Phys. 58 (2001), 189–204. Zbl 1005.70025, MR 1892919, 10.1023/A:1014548309187
Reference: [8] Saunders, D. J.: The Geometry of Jets Bundles.. Cambridge University Press, Cambridge, 1989. MR 0989588
Reference: [9] Smetanová, D.: On regularization of second order Hamiltonian systems.. Arch. Math. 42 (2006), 341–347. MR 2322420
Reference: [10] Smetanová, D.: On regularization of second order Lagrangians.. In: Global Analysis and Applied Mathematics, American Institut of Physics, Proc. 729, Ankara, 2004, 289–296. Zbl 1119.35328, MR 2215711
Reference: [11] Smetanová, D.: The second order lagrangians-regularity problem.. In: 14th Conference on Applied Mathematics, APLIMAT 2015, STU Bratislava, Bratislava, 2015, 690–697.
.

Files

Files Size Format View
ActaOlom_55-2016-2_13.pdf 300.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo