Previous |  Up |  Next

Article

Title: Interval fuzzy matrix equations (English)
Author: Draženská, Emília
Author: Myšková, Helena
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 1
Year: 2017
Pages: 99-112
Summary lang: English
.
Category: math
.
Summary: This paper deals with the solvability of interval matrix equations in fuzzy algebra. Fuzzy algebra is the algebraic structure in which the classical addition and multiplication are replaced by maximum and minimum, respectively. The notation $\mathbf{A} \otimes X\otimes \mathbf{C}=\mathbf{B}$, where $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are given interval matrices and $X$ is an unknown matrix, represents an interval system of matrix equations. We can define several types of solvability of interval fuzzy matrix equations. In this paper, we shall deal with four of them. We define the tolerance, weak tolerance, left-weak tolerance, and right-weak tolerance solvability and provide polynomial algorithms for checking them. (English)
Keyword: fuzzy algebra
Keyword: interval matrix equation
Keyword: tolerance solvability
Keyword: weak tolerance solvability
MSC: 15A06
MSC: 65G30
idZBL: Zbl 06738596
idMR: MR3638558
DOI: 10.14736/kyb-2017-1-0099
.
Date available: 2017-04-03T10:49:36Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146710
.
Reference: [1] Asse, A., Mangin, P., Witlaeys, D.: Assisted diagnosis using fuzzy information..NAFIPS 2 Congress, Schenectudy 1983. 10.1109/ifsa-nafips.2013.6608528
Reference: [2] Butkovič, P., Fiedler, M.: Tropical tensor product and beyond..http://web.mat.bham.ac.uk/P.Butkovic/Pubs.html.
Reference: [3] Cechlárová, K.: Solutions of interval systems in fuzzy algebra..In: Proc. SOR 2001 (V. Rupnik, L.Zadnik-Stirn, and S. Drobne, eds.), Preddvor, pp. 321-326.
Reference: [4] K.Cechlárová, Cuninghame-Green, R. A.: Interval systems of max-separable linear equations..Lin. Algebra Appl. 340 (2002), 215-224. Zbl 1004.15009, MR 1869429, 10.1016/s0024-3795(01)00405-0
Reference: [5] Cuninghame-Green, R. A.: Minimax Algebra..Lecture Notes in Economics and Mathematical Systems 1966, Springer, Berlin 1979. Zbl 0739.90073, MR 0580321, 10.1007/978-3-642-48708-8
Reference: [6] Gavalec, M., Plavka, J.: Monotone interval eigenproblem in fuzzy algebra..Kybernetika 46 (2010), 3, 387-396. MR 2676076
Reference: [7] Kreinovich, J., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity of Feasibility of Data Processing and Interval Computations..Kluwer, Dordrecht 1998. MR 1491092, 10.1007/978-1-4757-2793-7
Reference: [8] Myšková, H.: Interval systems of max-separable linear equations..Lin. Algebra Appl. 403 (2005), 263-272. Zbl 1129.15003, MR 2140286, 10.1016/j.laa.2005.02.011
Reference: [9] Myšková, H.: Control solvability of interval systems of max-separable linear equations..Lin. Algebra Appl. 416 (2006), 215-223. Zbl 1129.15003, MR 2242726, 10.1016/j.laa.2005.11.008
Reference: [10] Myšková, H.: On an algorithm for testing T4 solvability of fuzzy interval systems..Kybernetika 48 (2012), 5, 924-938. MR 3086860
Reference: [11] Myšková, H.: Interval max-plus matrix equations..Lin. Algebra Appl. 492 (2016), 111-127. MR 3440152, 10.1016/j.laa.2015.10.031
Reference: [12] Nola, A. Di, Salvatore, S., Pedrycz, W., Sanchez, E.: Fuzzy Relation Equations and Their Applications to Knowledge Engineering..Kluwer Academic Publishers, Dordrecht 1989. MR 1120025, 10.1007/978-94-017-1650-5
Reference: [13] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices..Discrete Appl. Math. 160 (2012), 640-647. MR 2876347, 10.1016/j.dam.2011.11.010
Reference: [14] Rohn, J.: Systems of Interval Linear Equations and Inequalities (Rectangular Case)..Technical Report 875, Institute of Computer Science, Academy of Sciences of the Czech Republic, Praha 2002. MR 2002910
Reference: [15] Rohn, J.: Complexity of some linear problems with interval data..Reliable Computing 3 (1997), 315-323. Zbl 0888.65052, MR 1616269, 10.1023/a:1009987227018
Reference: [16] Sanchez, E.: Medical diagnosis and composite relations..In: Advances in Fuzzy Set Theory and Applications (M. M. Gupta, R. K. Ragade, R. R. Yager, eds.), North-Holland, Amsterdam-New York 1979, pp. 437-444. MR 0558737
Reference: [17] Terano, T., Tsukamoto, Y.: Failure diagnosis by using fuzzy logic..In: Proc. IEEE Conference on Decision Control, New Orleans 1977, pp. 1390-1395. 10.1109/cdc.1977.271521
Reference: [18] Zadeh, L. A.: Toward a theory of fuzzy systems..In: Aspects of Network and Systems Theory (R. E. Kalman and N. De Claris, eds.), Hold, Rinehart and Winston, New York 1971, pp. 209-245.
Reference: [19] Zimmermann, K.: Extremální algebra..Ekonomicko-matematická laboratoř Ekonomického ústavu ČSAV, Praha 1976.
.

Files

Files Size Format View
Kybernetika_53-2017-1_5.pdf 366.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo