Previous |  Up |  Next

Article

Title: Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems (English)
Author: Wang, Xue-Fang
Author: Deng, Zhenhua
Author: Ma, Song
Author: Du, Xian
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 1
Year: 2017
Pages: 179-194
Summary lang: English
.
Category: math
.
Summary: In this paper, a distributed optimal consensus problem is investigated to achieve the optimization of the sum of local cost function for a group of agents in the Euler-Lagrangian (EL) system form. We consider that the local cost function of each agent is only known by itself and cannot be shared with others, which brings challenges in this distributed optimization problem. A novel gradient-based distributed continuous-time algorithm with the parameters of EL system is proposed, which takes the distributed event-triggered control mechanism into account. A sufficient condition is given to show that the performance of the global convergence to the optimal point can be guaranteed under the proposed method. Moreover, the Zeno behavior of triggering time can be excluded. Finally, to show the effectiveness of the presented algorithm, an example is given along with simulation results. (English)
Keyword: optimal consensus
Keyword: multi-agent system
Keyword: Euler–Lagrangian system
Keyword: event-triggered control
MSC: 34H05
MSC: 34K35
MSC: 49K35
MSC: 65K10
MSC: 90C25
idZBL: Zbl 06738601
idMR: MR3638563
DOI: 10.14736/kyb-2017-1-0179
.
Date available: 2017-04-03T10:55:33Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146715
.
Reference: [1] Nedic, A., Ozdaglar, A.: Distributed subgradient methods for multi-agent optimization..IEEE Trans. Automat. Control 54 (2009), 48-61. MR 2478070, 10.1109/tac.2008.2009515
Reference: [2] Shi, G., Johansson, K. H., Hong, Y.: Reaching an optimal consensus: dynamical systems that compute intersections of convex sets..IEEE Trans. Automat. Control 58 (2013), 610-622. MR 3029459, 10.1109/tac.2012.2215261
Reference: [3] Bose, S., Low, S. H., Teeraratkul, T., Hassibi, B.: Equivalent relaxations of optimal power flow..IEEE Trans. Automat. Control 60 (2015), 729-742. MR 3318399, 10.1109/tac.2014.2357112
Reference: [4] Zhang, Y., Lou, Y., Hong., Y., Xie, L.: Distributed projection-based algorithms for source localization in wireless sensor networks..IEEE Trans. Wireless Commun. 14 (2015), 3131-3142. 10.1109/twc.2015.2402672
Reference: [5] Liu, Q., Wang, J.: A second-order multi-agent network for bound-constrained distributed optimization..IEEE Trans. Automat. Control 60 (2015), 3310-3315. MR 3432700, 10.1109/tac.2015.2416927
Reference: [6] Yi, P., Hong, Y., Liu, F.: Distributed gradient algorithm for constrained optimization with application to load sharing in power systems..Systems Control Lett. 83 (2015), 45-52. Zbl 1327.93033, MR 3373270, 10.1016/j.sysconle.2015.06.006
Reference: [7] Wang, X., Yi, P., Hong, Y.: Dynamical optimization for multi-agent systems with external disturbance..Control Theory Technol. 12 (2014), 132-138. MR 3199533, 10.1007/s11768-014-0036-y
Reference: [8] Wang, X., Hong, Y., Ji, H.: Distributed optimization for a class of nonlinear multiagent systems With disturbance rejection..IEEE Trans. Cybernet. 46 (2016), 1655-1666. 10.1109/tcyb.2015.2453167
Reference: [9] Zhang, Y., Deng, Z., Hong, Y.: Distributed optimal coordination for multiple heterogenous Euler-Lagrangian systems..Automatica 79 (2017), 207-213. MR 3627983, 10.1016/j.automatica.2017.01.004
Reference: [10] Yi, P., Hong, Y.: Stochastic sub-gradient algoirthm for distributed optimization with random sleep scheme..Control Theory Technol. 13 (2015), 333-347. MR 3435158, 10.1007/s11768-015-5100-8
Reference: [11] Hu, J., Chen, G., Li, H.: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays..Kybernetika 47 (2011), 630-643. Zbl 1227.93008, MR 2884865
Reference: [12] Deng, Z., Hong, Y.: Distributed event-triggered optimization for multi-agent systems with disturbance rejection..In: 12th IEEE Int. Conf. Control and Autom., Kathmandu 2016, pp 13-18. 10.1109/icca.2016.7505245
Reference: [13] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks..IEEE Trans. Automat. Control 52 (2007), 1680-1685. MR 2352444, 10.1109/tac.2007.904277
Reference: [14] Chen, W. S., Ren, W.: Event-triggered zero-gradient-sum distributed consensus optimization over directed networks..Automatica 65 (2016), 90-97. Zbl 1328.93167, MR 3447697, 10.1016/j.automatica.2015.11.015
Reference: [15] Deng, Z., Wang, X., Hong, Y.: Distributed optimization design with triggers for disturbed continuous-time multi-agent systems..IET Control Theory Appl. 11 (2017), 2, 282-290. 10.1049/iet-cta.2016.0795
Reference: [16] Kia, S. S., Cortes, J., Martinez, S.: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication..Automatica 55 (2015), 254-264. MR 3336675, 10.1016/j.automatica.2015.03.001
Reference: [17] Cai, H., Huang, J.: Leader-following consensus of multiple uncertain Euler-Lagrange systems under switching network topology..Int. J. Gene. Sys., 43 (2014), 294-304. Zbl 1302.93005, MR 3177023, 10.1080/03081079.2014.883714
Reference: [18] Chung, S. J., Slotine, J. J. E.: Cooperative robot control and concurrent synchronization of lagrangian systems..IEEE Trans. Robotics 25 (2009), 686-700. 10.1109/tro.2009.2014125
Reference: [19] Dixon, W. E.: Nonlinear Control of Engineering Systems: A Lyapunov-Based Approach..Birkhäuser, Boston 2003. Zbl 1060.93003
Reference: [20] Kim, C. Y., Song, D. Z., Xu, Y. L., Yi, J. G., Wu, X. Y.: Cooperative search of multiple unknown transient radio sources using multiple paired mobile robots..IEEE Trans. Rob. 30 (2014), 1161-1173. 10.1109/tro.2014.2333097
Reference: [21] Deng, Z., Hong, Y.: Multi-agent optimization design for autonomous lagrangian systems..Unmanned Systems 4 (2016), 5-13. 10.1142/s230138501640001x
Reference: [22] Spong, M., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control..John Wiley and Sons, Hoboken 2006. 10.1108/ir.2006.33.5.403.1
Reference: [23] Meng, Z., Yang, T., Shi, G., Dimarogonas, D. V., Hong, Y., Johansson, K. H.: Set target aggregation of multiple mechanical systems..In: IEEE 53rd Ann. Conf. Decision and Control (CDC), Los Angeles 2014, pp. 6830-6835. 10.1109/cdc.2014.7040462
Reference: [24] Rockafellar, R.: Convex Analysis..Princeton University Press, Princeton 1970. Zbl 1011.49013, MR 0274683, 10.1017/s0013091500010142
Reference: [25] Godsil, C. D., Royle, G.: Algebraic Graph Theory..Springer, New York 2001. Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9
Reference: [26] Zhu, W., Jiang, Z. P.: Event-based leader-following consensus of multi-agent systems with input time delay..IEEE Trans. Automat. Control 60 (2015), 1362-1367. MR 3351418, 10.1109/tac.2014.2357131
.

Files

Files Size Format View
Kybernetika_53-2017-1_10.pdf 492.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo