Previous |  Up |  Next

Article

Title: On Hattori spaces (English)
Author: Bouziad, A.
Author: Sukhacheva, E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 2
Year: 2017
Pages: 213-223
Summary lang: English
.
Category: math
.
Summary: For a subset $A$ of the real line $\mathbb R$, Hattori space $H(A)$ is a topological space whose underlying point set is the reals $\mathbb R$ and whose topology is defined as follows: points from $A$ are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on $A$ which are sufficient and necessary for $H(A)$ to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated (in Tkacenko sense). Some of these results solve questions raised by V.A. Chatyrko and Y. Hattori. (English)
Keyword: Hattori space
Keyword: Čech-complete space
Keyword: Čech-analytic space
Keyword: neighborhood assignment
Keyword: Sorgenfrey line
Keyword: scattered set
Keyword: weakly separated space
MSC: 54C05
MSC: 54C35
MSC: 54C45
MSC: 54C99
idZBL: Zbl 06773715
idMR: MR3666942
DOI: 10.14712/1213-7243.2015.199
.
Date available: 2017-06-13T13:23:39Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146789
.
Reference: [1] Alexandroff P., Urysohn P.: Uber nulldimensionale Punktmengen.Math. Ann. 98 (1928), 89–106. MR 1512393, 10.1007/BF01451582
Reference: [2] Bennett H.R., Lutzer D.J.: Generalized ordered spaces with capacities.Pacific J. Math. 112 (1984), no. 1, 11–19. Zbl 0541.54038, MR 0739137, 10.2140/pjm.1984.112.11
Reference: [3] Chatyrko V.A., Hattori Y.: A poset of topologies on the set of real numbers.Comment. Math. Univ. Carolin. 54 (2013), no. 2, 189–196. Zbl 1289.54020, MR 3067703
Reference: [4] Creede G.D.: Concerning semistratifiable spaces.Pacific J. Math. 32 (1970), 47–54. MR 0254799, 10.2140/pjm.1970.32.47
Reference: [5] van Douwen E.K.: Closed copies of the rationals.Comment. Math. Univ. Carolin. 28 (1987), no. 1, 137–139. Zbl 0614.54028, MR 0889775
Reference: [6] van Douwen E.K.: Retracts of the Sorgenfrey line.Compositio Math. 38 (1979), no. 2, 155–161. Zbl 0408.54004, MR 0528838
Reference: [7] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [8] Faber M.J.: Metrizability in Generalized Ordered Spaces.Math. Centre Tracts, 53, Math. Centre, Amsterdam, 1974. Zbl 0282.54017, MR 0418053
Reference: [9] Fremlin D.H.: Čech-analytic spaces.Note, December 1980.
Reference: [10] Gittings R.F.: Concerning quasi-complete spaces.General Topology Appl. 6 (1976), no. 1, 73–89. Zbl 0323.54025, MR 0391033, 10.1016/0016-660X(76)90010-6
Reference: [11] Hattori Y.: Order and topological structures of posets of the formal balls on metric spaces.Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 43 (2010), 13–26. Zbl 1196.54048, MR 2650132
Reference: [12] Kulesza J.: Results on spaces between the Sorgenfrey and usual topologies on $\mathbb R$.to appear in Topology Appl.
Reference: [13] van Mill J.: Sierpinski's technique and subsets of $\mathbb R$.Topology Appl. 44 (1992), no. 1-3, 241–261. MR 1173263
Reference: [14] Ščepin E.: On topological products, groups, and a new class of spaces more general than metric spaces.Soviet Math. Dokl. 17 (1976), 152-155. MR 0405350
Reference: [15] Tkacenko M.G.: Chains and cardinals.Dokl. Akad. Nauk SSSR 239 (1978), no. 3, 546–549 (in Russian); English translation: Soviet Math. Dokl. 19 (1978), no. 2, 382–385. MR 0500798
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-2_7.pdf 286.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo