Previous |  Up |  Next

Article

Title: Density estimation via best $L^2$-approximation on classes of step functions (English)
Author: Ferger, Dietmar
Author: Venz, John
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 198-219
Summary lang: English
.
Category: math
.
Summary: We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown. (English)
Keyword: argmin-theorem
Keyword: density estimation
Keyword: step functions
Keyword: martingale inequalities
Keyword: multivariate cadlag stochastic processes
MSC: 60G44
MSC: 62F10
MSC: 62G07
idZBL: Zbl 06770164
idMR: MR3661348
DOI: 10.14736/kyb-2017-2-0198
.
Date available: 2017-06-25T17:53:33Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146801
.
Reference: [1] Billingsley, P.: Convergence of Probability Measures. Second Edition..John Wiley and Sons, Inc., New York 1999. MR 1700749, 10.1002/9780470316962
Reference: [2] Birnbaum, Z., Marshall, A.: Some multivariate Chebyshev inequalities with extensions to continuous parameter processes..Ann. Math. Statist. 32 (1961), 687-703. MR 0148106, 10.1214/aoms/1177704964
Reference: [3] Chu, C. K., Cheng, P. E.: Estimation of jump points and jump values of a density function..Statist. Sinica 6 (1996), 79-95. Zbl 0839.62039, MR 1379050
Reference: [4] Dudley, R. .M.: Uniform Central Limit Theorems..Cambridge University Press, New York 1999. Zbl 1317.60030, MR 1720712, 10.1017/cbo9780511665622
Reference: [5] Ferger, D.: Minimum distance estimation in normed linear spaces with Donsker-classes..Math. Methods Statist. 19 (2010), 246-266. Zbl 1282.60029, MR 2742928, 10.3103/s1066530710030038
Reference: [6] Ferger, D.: Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies..Theory Stoch. Process. 20 (2015), 36, 13-41. MR 3510226
Reference: [7] Gaenssler, P., Stute, W.: Wahrscheinlichkeitstheorie..Springer-Verlag, Berlin, Heidelberg, New York 1977. Zbl 0357.60001, MR 0501219
Reference: [8] Kanazawa, Y.: An optimal variable cell histogram..Comm. Statist. Theory Methods 17 (1988), 1401-1422. Zbl 0939.62508, MR 0945798, 10.1080/03610928808829688
Reference: [9] Kanazawa, Y.: An optimal variable cell histogram based on the sample spacings..Ann. Statist. 20 (1992), 291-304. Zbl 0745.62034, MR 1150345, 10.1214/aos/1176348523
Reference: [10] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Second Edition..Springer-Verlag, New York 2002. MR 1911855, 10.1007/978-1-4613-0055-7
Reference: [11] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality..Ann. Probab. 18 (1990), 1269-1283. Zbl 0713.62021, MR 1062069, 10.1214/aop/1176990746
Reference: [12] Rockefellar, R. T., Wets, R. J.-B.: Variational Analysis..Springer-Verlag, Berlin, Heidelberg 1998.
Reference: [13] Shorack, G. R., Wellner, J. A.: Empirical Processes With Applications to Statistics..John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1986. Zbl 1171.62057, MR 0838963
.

Files

Files Size Format View
Kybernetika_53-2017-2_2.pdf 411.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo