Previous |  Up |  Next

Article

Title: Nobelova cena s dobře definovanou topologií (Czech)
Title: Nobel Prize with a well-defined topology (English)
Author: Rauch, Tomáš
Author: Orlita, Milan
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 62
Issue: 2
Year: 2017
Pages: 102-109
Summary lang: Czech
.
Category: physics
.
Summary: Od publikace původních teoretických prací Davida Thoulesse, Duncana Haldana a Michaela Kosterlitze věnovaných topologii ve fyzice pevných látek uplynulo již více než třicet let. Během této doby se studium tzv. topologických materiálů stalo jedním z nejvýznamnějších směrů současné teoretické i experimentální fyziky. A právě v minulém roce se autory těchto prací rozhodla ocenit švédská Královská akademie věd udělením Nobelovy ceny za fyziku. V následujícím textu se pokusíme čtenářům ve zjednodušené podobě přiblížit roli topologie ve fyzice pevných látek i přínos laureátů. (Czech)
.
Date available: 2017-07-10T08:47:32Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146813
.
Reference: [1] Adler, S. L.: Axial-vector vertex in spinor electrodynamics.. Phys. Rev. 177 (1969), 2426–2438.
Reference: [2] Avron, J. E., Osadchy, D, Seiler, R.: A topological look at the quantum Hall effect.. Physics Today 56 (2003), 38–42. 10.1063/1.1611351
Reference: [3] D’yakonov, M. I., Perel’, V. I.: Possibility of orienting electron spins with current.. Sov. Phys. JETP Lett. 13 (1971), 467–469.
Reference: [4] Fu, L.: Topological crystalline insulators.. Phys. Rev. Lett. [online] 106 (2011), paper No. 106802.
Reference: [5] Fu, L., Kane, C., Mele, E.: Topological insulators in three dimensions.. Phys. Rev. Lett. [online] 98 (2007), paper No. 106803.
Reference: [6] Haldane, F. D. M.: Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”.. Phys. Rev. Lett. 61 (1988), 2015–2018.
Reference: [7] Haldane, F. D. M.: Topological states of quantum condensed matter.. Plenary talk at APS March Meeting (2017).
Reference: [8] Hasan, M., Kane, C.: Colloquium: topological insulators.. Rev. Modern Phys. 82 (2010), 3045–3067.
Reference: [9] Hatsugai, Y.: Chern number and edge states in the integer quantum Hall effect.. Phys. Rev. Lett. 71 (1993), 3697–3700. Zbl 0972.81712, MR 1246070
Reference: [10] Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., Hasan, M. Z.: A topological Dirac insulator in a quantum spin Hall phase.. Nature 452 (2008), 970–974. 10.1038/nature06843
Reference: [11] Hsieh, T. H., Lin, H., Liu, J., Duan, W., Bansil, A., Fu, L.: Topological crystalline insulators in the SnTe material class.. Nature Comms. [online] 3 (2012), paper No. 982.
Reference: [12] Jeon, S., Zhou, B. B., Gyenis, A., Feldman, B. E., Kimchi, I., Potter, A. C., Gibson, Q. D., Cava, R. J., Vishwanath, A., Yazdani, A.: Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd$_3$As$_2$.. Nature Mater. 13 (2014), 851–856.
Reference: [13] Kane, C. L., Mele, E. J.: Quantum spin Hall effect in graphene.. Phys. Rev. Lett. [online] 95 (2005), paper No. 226801.
Reference: [14] Kane, C. L., Mele, E. J.: Z$_2$ topological order and the quantum spin Hall effect.. Phys. Rev. Lett. [online] 95 (2005), paper No. 146802.
Reference: [15] Kato, Y. K., Myers, R. C., Gossard, A. C., Awschalom, D. D.: Observation of the spin Hall effect in semiconductors.. Science 306 (2004), 1910–1913.
Reference: [16] Klitzing, K. von, Dorda, G., Pepper, M.: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance.. Phys. Rev. Lett. 45 (1980), 494–497.
Reference: [17] König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., Zhang, S.-C.: Quantum spin Hall insulator state in HgTe quantum wells.. Science 318 (2007), 766–770.
Reference: [18] Liu, Z. K., Zhou, B., Zhang, Y., Wang, Z. J., Weng, H. M., Prabhakaran, D., Mo, S.-K., Shen, Z. X., Fang, Z., Dai, X., Hussain, Z., Chen, Y. L.: Discovery of a three-dimensional topological Dirac semimetal, Na$_3$Bi.. Science 343 (2014), 864–867.
Reference: [19] Moore, J. E., Balents, L.: Topological invariants of time-reversal-invariant band structures.. Phys. Rev. B [online] 75 (2007), paper No. 121306.
Reference: [20] Rauch, T., Flieger, M., Henk, J., Mertig, I., Ernst, A.: Dual topological character of chalcogenides: theory for Bi$_2$Te$_3$.. Phys. Rev. Lett. [online] 112 (2014), paper No. 016802.
Reference: [21] Středa, P.: Kvantové Hallovy jevy.. Pokroky Mat. Fyz. Astronom. 44 (1999), 177–186.
Reference: [22] Teo, J., Fu, L., Kane, C.: Surface states and topological invariants in three-dimensional topological insulators: Application to Bi$_{1-x}$Sb$_{x}$.. Phys. Rev. B [online] 78 (2008), paper No. 045426.
Reference: [23] Thouless, D. J., Kohmoto, M., Nightingale, M. P., Nijs, M. den: Quantized Hall conductance in a two-dimensional periodic potential.. Phys. Rev. Lett. 49 (1982), 405–408.
Reference: [24] Wunderlich, J., Kaestner, B., Sinova, J., Jungwirth, T.: Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system.. Phys. Rev. Lett. [online] 94 (2005), paper No. 047204.
Reference: [25] Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y. S., Cava, R. J., Hasan, M. Z.: Observation of a large-gap topological-insulator class with a single Dirac cone on the surface.. Nature Phys. 5 (2009), 398–402. 10.1038/nphys1274
Reference: [26] Xu, S.-Y., Alidoust, N., Belopolski, I., Yuan, Z., Bian, G., Chang, T.-R., Zheng, H., Strocov, V. N., Sanchez, D. S., Chang, G., Zhang, C., Mou, D., Wu, Y., Huang, L., Lee, C.-C., Huang, S.-M., Wang, B., Bansil, A., Jeng, H.-T, Neupert, T., Kaminski, A., Lin, H., Jia, S., Hasan, M. Z.: Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide.. Nature Phys. 11 (2015), 748–754.
Reference: [27] Yang, L. X., Liu, Z. K., Sun, Y., Peng, H., Yang, H. F., Zhang, T., Zhou, B., Zhang, Y., Guo, Y. F., Rahn, M., Prabhakaran, D., Hussain, Z., Mo, Z.-K., Felser, C., Yan, B., Chen, Y. L.: Weyl semimetal phase in the non-centrosymmetric compound TaAs.. Nature Phys. 11 (2015), 728–732. 10.1038/nphys3425
Reference: [28] Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z, Zhang, S.-C.: Topological insulators in Bi$_2$Se$_3$, Bi$_2$Te$_3$ and Sb$_2$Te$_3$ with a single Dirac cone on the surface.. Nature Phys. 5 (2009), 438–442.
.

Files

Files Size Format View
PokrokyMFA_62-2017-2_2.pdf 913.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo