Previous |  Up |  Next

Article

Title: A topological duality for the $F$-chains associated with the logic $C_\omega $ (English)
Author: Quiroga, Verónica
Author: Fernández, Víctor
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 3
Year: 2017
Pages: 225-241
Summary lang: English
.
Category: math
.
Summary: In this paper we present a topological duality for a certain subclass of the $F_{\omega }$-structures defined by M. M. Fidel, which conform to a non-standard semantics for the paraconsistent N. C. A. da Costa logic $C_\omega $. Actually, the duality introduced here is focused on $F_\omega $-structures whose supports are chains. For our purposes, we characterize every \mbox {$F_\omega $-chain} by means of a new structure that we will call {\it down-covered chain} (DCC) here. This characterization will allow us to prove the dual equivalence between the category of $F_\omega $-chains and a new category, whose objects are certain special topological spaces (together with a distinguished family of open sets) and whose morphisms are particular continuous functions. (English)
Keyword: paraconsistent logic
Keyword: algebraic logic
Keyword: dualities for ordered structures
MSC: 03B53
MSC: 03G10
MSC: 06D50
idZBL: Zbl 06770143
idMR: MR3695464
DOI: 10.21136/MB.2016.0079-14
.
Date available: 2017-08-31T12:39:26Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146822
.
Reference: [1] Balbes, R., Dwinger, P.: Distributive Lattices.University of Missouri Press, Columbia (1974). Zbl 0321.06012, MR 0373985
Reference: [2] Carnielli, W. A., Marcos, J.: Limits for paraconsistent calculi.Notre Dame J. Formal Logic 40 (1999), 375-390. Zbl 1007.03028, MR 1845624, 10.1305/ndjfl/1022615617
Reference: [3] Celani, S. A., Cabrer, L. M., Montangie, D.: Representation and duality for Hilbert algebras.Cent. Eur. J. Math. 7 (2009), 463-478. Zbl 1184.03064, MR 2534466, 10.2478/s11533-009-0032-5
Reference: [4] Celani, S. A., Montangie, D.: Hilbert algebras with supremum.Algebra Univers. 67 (2012), 237-255. Zbl 1254.03117, MR 2910125, 10.1007/s00012-012-0178-z
Reference: [5] Costa, N. C. A. da: On the theory of inconsistent formal systems.Notre Dame J. Formal Logic 15 (1974), 497-510. Zbl 0236.02022, MR 0354361, 10.1305/ndjfl/1093891487
Reference: [6] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge (1990). Zbl 0701.06001, MR 1058437
Reference: [7] Fidel, M. M.: The decidability of the calculi ${\cal C}_n$.Rep. Math. Logic 8 (1977), 31-40. Zbl 0378.02011, MR 0479957
Reference: [8] Fidel, M. M.: An algebraic study of logic with constructible negation.Proc. 3rd Brazilian Conf. Mathematical Logic, Recife, 1979 (A. I. Arruda et al., eds.) Soc. Brasil. Lógica, Sao Paulo (1980), 119-129. Zbl 0453.03024, MR 0603663
Reference: [9] Jansana, R., Rivieccio, U.: Priestley duality for $N4$-lattices.Proc. 8th Conf. European Society for Fuzzy Logic and Technology, 2013, pp. 263-269.
Reference: [10] Mandelker, M.: Relative annihilators in lattices.Duke Math. J. 37 (1970), 377-386. Zbl 0206.29701, MR 0256951, 10.1215/S0012-7094-70-03748-8
Reference: [11] Odintsov, S. P.: Constructive Negations and Paraconsistency.Trends in Logic---Studia Logica Library 26. Springer, New York (2008). Zbl 1161.03014, MR 2680932, 10.1007/978-1-4020-6867-6
Reference: [12] Priestley, H. A.: Ordered topological spaces and the representation of distributive lattices.Proc. Lond. Math. Soc. (3) 24 (1972), 507-530. Zbl 0323.06011, MR 0300949, 10.1112/plms/s3-24.3.507
Reference: [13] Quiroga, V.: An alternative definition of $F$-structures for the logic $C_1$.Bull. Sect. Log., Univ. Łódź, Dep. Log. 42 (2013), 119-134. Zbl 1287.03060, MR 3168734
Reference: [14] Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics.Monografie Matematyczne 41. Panstwowe Wydawnictwo Naukowe, Warsaw (1963). Zbl 0122.24311, MR 0163850
.

Files

Files Size Format View
MathBohem_142-2017-3_1.pdf 357.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo