Previous |  Up |  Next

Article

Title: Probabilistic approach spaces (English)
Author: Jäger, Gunther
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 3
Year: 2017
Pages: 277-298
Summary lang: English
.
Category: math
.
Summary: We study a probabilistic generalization of Lowen's approach spaces. Such a probabilistic approach space is defined in terms of a probabilistic distance which assigns to a point and a subset a distance distribution function. We give a suitable axiom scheme and show that the resulting category is isomorphic to the category of left-continuous probabilistic topological convergence spaces and hence is a topological category. We further show that the category of Lowen's approach spaces is isomorphic to a simultaneously bireflective and bicoreflective subcategory and that the category of probabilistic quasi-metric spaces is isomorphic to a bicoreflective subcategory of the category of probabilistic approach spaces. (English)
Keyword: approach space
Keyword: probabilistic approach space
Keyword: probabilistic convergence space
Keyword: probabilistic metric space
MSC: 54A20
MSC: 54E70
MSC: 54E99
MSC: 60B99
idZBL: Zbl 06770146
idMR: MR3695467
DOI: 10.21136/MB.2017.0064-15
.
Date available: 2017-08-31T12:40:54Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146826
.
Reference: [1] Abramsky, S., Jung, A.: Domain Theory.Handbook of Logic and Computer Science. Vol. 3 (S. Abramsky et al., eds.) Claredon Press, Oxford University Press, New York (1994), 1-168. MR 1365749
Reference: [2] Adámek, J., Herrlich, H., Strecker, G. E.: Abstract and Concrete Categories---The Joy of Cats.John Wiley & Sons, New York (1990). Zbl 0695.18001, MR 1051419
Reference: [3] Brock, P.: Probabilistic convergence spaces and generalized metric spaces.Int. J. Math. Math. Sci. 21 (1998), 439-452. Zbl 0905.54005, MR 1620306, 10.1155/S0161171298000611
Reference: [4] Brock, P., Kent, D. C.: Approach spaces, limit tower spaces, and probabilistic convergence spaces.Appl. Categ. Struct. 5 (1997), 99-110. Zbl 0885.54008, MR 1456517, 10.1023/A:1008633124960
Reference: [5] Flagg, R. C.: Quantales and continuity spaces.Algebra Univers. 37 (1997), 257-276. Zbl 0906.54024, MR 1452402, 10.1007/s000120050018
Reference: [6] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove, M. W., Scott, D.S.: Continuous Lattices and Domains.Encyclopedia of Mathematics and Its Applications 93. Cambridge University Press, Cambridge (2003). Zbl 1088.06001, MR 1975381, 10.1017/CBO9780511542725
Reference: [7] Jäger, G.: A convergence theory for probabilistic metric spaces.Quaestiones Math. 38 (2015), 587-599. MR 3403669, 10.2989/16073606.2014.981734
Reference: [8] Kowalsky, H.-J.: Limesräume und Komplettierung.Math. Nachr. 12 (1954), 301-340. Zbl 0056.41403, MR 0073147, 10.1002/mana.19540120504
Reference: [9] Lowen, R.: Approach spaces: A common supercategory of TOP and MET.Math. Nachr. 141 (1989), 183-226. Zbl 0676.54012, MR 1014427, 10.1002/mana.19891410120
Reference: [10] Lowen, R.: Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad.Oxford Mathematical Monographs. Clarendon Press, Oxford (1997). Zbl 0891.54001, MR 1472024
Reference: [11] Lowen, R.: Index Analysis: Approach Theory at Work.Springer Monographs in Mathematics. Springer, London (2015). Zbl 1311.54002, MR 3308451, 10.1007/978-1-4471-6485-2
Reference: [12] Menger, K.: Statistical metrics.Proc. Natl. Acad. Sci. USA 28 (1942), 535-537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535
Reference: [13] Preuss, G.: Foundations of Topology: An Approach to Convenient Topology.Kluwer Academic Publishers, Dordrecht (2002). Zbl 1058.54001, MR 2033142, 10.1007/978-94-010-0489-3
Reference: [14] Richardson, G. D., Kent, D. C.: Probabilistic convergence spaces.J. Aust. Math. Soc., Ser. A 61 (1996), 400-420. Zbl 0943.54002, MR 1420347, 10.1017/S1446788700000483
Reference: [15] Roldán-López-de-Hierro, A.-F., Sen, M. de la, Martínez-Moreno, J., Hierro, C. Roldán-López-de-: An approach version of fuzzy metric spaces including an ad hoc fixed point theorem.Fixed Point Theory Appl. (electronic only) (2015), Article ID 33, 23 pages. Zbl 1310.54004, MR 3316772, 10.1186/s13663-015-0276-7
Reference: [16] Saminger-Platz, S., Sempi, C.: A primer on triangle functions I.Aequationes Math. 76 (2008), 201-240. Zbl 1162.54013, MR 2461890, 10.1007/s00010-008-2936-8
Reference: [17] Saminger-Platz, S., Sempi, C.: A primer on triangle functions II.Aequationes Math. 80 (2010), 239-268. Zbl 1213.39031, MR 2739176, 10.1007/s00010-010-0038-x
Reference: [18] Schweizer, B., Sklar, A.: Statistical metric spaces.Pac. J. Math. 10 (1960), 313-334. Zbl 0091.29801, MR 0115153, 10.2140/pjm.1960.10.313
Reference: [19] Schweizer, B., Sklar, A.: Probabilistic metric spaces.North Holland Series in Probability and Applied Mathematics. North Holland, New York (1983). Zbl 0546.60010, MR 0790314, nema
Reference: [20] Tardiff, R. M.: Topologies for probabilistic metric spaces.Pac. J. Math. 65 (1976), 233-251. Zbl 0337.54004, MR 0423315, 10.2140/pjm.1976.65.233
Reference: [21] Wald, A.: On a statistical generalization of metric spaces.Proc. Natl. Acad. Sci. USA 29 (1943), 196-197. Zbl 0063.08119, MR 0007950, 10.1073/pnas.29.6.196
.

Files

Files Size Format View
MathBohem_142-2017-3_4.pdf 389.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo