Previous |  Up |  Next

Article

Title: Construction of uninorms on bounded lattices (English)
Author: Çaylı, Gül Deniz
Author: Karaçal, Funda
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 3
Year: 2017
Pages: 394-417
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose the general methods, yielding uninorms on the bounded lattice $(L,\leq ,0,1)$, with some additional constraints on $e\in L\backslash \{0,1\}$ for a fixed neutral element $e\in L\backslash \{0,1\}$ based on underlying an arbitrary triangular norm $T_{e}$ on $[0,e]$ and an arbitrary triangular conorm $S_{e}$ on $[e,1]$. And, some illustrative examples are added for clarity. (English)
Keyword: bounded lattice
Keyword: triangular norm
Keyword: triangular conorm
Keyword: uninorms
MSC: 03B52
MSC: 03E72
MSC: 06B20
idZBL: Zbl 06819615
idMR: MR3684677
DOI: 10.14736/kyb-2017-3-0394
.
Date available: 2017-11-12T09:39:03Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146934
.
Reference: [1] Aşıcı, E., Karaçal, F.: On the T-partial order and properties..Inf. Sci. 267 (2014), 323-333. MR 3177320, 10.1016/j.ins.2014.01.032
Reference: [2] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order..Kybernetika 52 (2016), 15-27. MR 3482608, 10.14736/kyb-2016-1-0015
Reference: [3] Aşıcı, E.: An order induced by nullnorms and its properties..Fuzzy Sets Syst. In press 2017. MR 3690353, 10.1016/j.fss.2016.12.004
Reference: [4] Birkhoff, G.: Lattice Theory..American Mathematical Society Colloquium Publ., Providence 1967. Zbl 0537.06001, MR 0227053, 10.1090/coll/025
Reference: [5] Baets, B. De: Idempotent uninorms..European J. Oper. Res. 118 (1999), 631-642. Zbl 1178.03070, 10.1016/s0377-2217(98)00325-7
Reference: [6] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices..In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica. 10.1109/sisy.2014.6923558
Reference: [7] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inf. Sci. 367-368 (2016), 221-231. MR 3684677, 10.1016/j.ins.2016.05.036
Reference: [8] Çaylı, G. D., Karaçal, F.: Some remarks on idempotent nullnorms on bounded lattices..In: Torra V., Mesiar R., Baets B. (eds) Aggregation Functions in Theory and in Practice. AGOP 2017. Advances in Intelligent Systems and Computing, Springer, Cham, 581 (2017), 31-39. MR 3623328, 10.1007/978-3-319-59306-7_4
Reference: [9] Drewniak, J., Drygaś, P.: On a class of uninorms..Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 10 (2002), 5-10. MR 1962665, 10.1142/s021848850200179x
Reference: [10] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums..Fuzzy Sets Syst. 161 (2010), 149-157. Zbl 1191.03039, MR 2566236, 10.1016/j.fss.2009.09.017
Reference: [11] Drygaś, P., Ruiz-Aguilera, D., Torrens, J.: Acharacterization of uninorms locally internal in $A(e)$ with continuous underlying operators..Fuzzy Sets Syst. 287 (2016), 137-153. MR 3447023, 10.1016/j.fss.2015.07.015
Reference: [12] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms..Fuzzy Sets Syst. 291 (2016), 82-97. MR 3463655, 10.1016/j.fss.2015.02.014
Reference: [13] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms..Inf. Sci. 330 (2016), 315-327. 10.1016/j.ins.2015.10.019
Reference: [14] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertain Fuzziness Knowl.-Based Syst. 5 (1997), 411-427. Zbl 1232.03015, MR 1471619, 10.1142/s0218488597000312
Reference: [15] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Syst. 261 (2015), 33-43. MR 3291484, 10.1016/j.fss.2014.05.001
Reference: [16] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices..Fuzzy Sets Syst. 308 (2017), 54-71. MR 3579154, 10.1016/j.fss.2016.05.014
Reference: [17] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Acad. Publ., Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [18] Mas, M., Monserrat, M., Torrens, J.: On left and right uninorms..Int. J. Uncertainly Fuzziness Knowl.-Based Syst. 9 (2001), 491-507. Zbl 1045.03029, MR 1852342, 10.1142/s0218488501000909
Reference: [19] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North-Holland, New York 1983. Zbl 0546.60010, MR 0790314
Reference: [20] Takács, M.: Lattice Ordered Monoids and Left Continuous Uninorms and t-norms..Book Chapter from: Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, Book Series: Advances in Soft Computing, Publisher: Springer Berlin/ Heidelberg, 42 (2007), 565-572. 10.1007/978-3-540-72434-6_57
Reference: [21] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice..Fuzzy Sets Syst. 160 (2009), 22-31. MR 2469427, 10.1016/j.fss.2008.03.001
Reference: [22] Yager, R. R.: Misrepresentations and challenges: a response to Elkan..IEEE Expert 1994.
Reference: [23] Yager, R. R., Rybalov, A.: Uninorms aggregation operators..Fuzzy Sets Syst. 80 (1996), 111-120. MR 1389951, 10.1016/0165-0114(95)00133-6
.

Files

Files Size Format View
Kybernetika_53-2017-3_2.pdf 364.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo