Previous |  Up |  Next

Article

Title: Consensus-based state estimation for multi-agent systems with constraint information (English)
Author: Hu, Chen
Author: Qin, Weiwei
Author: Li, Zhenhua
Author: He, Bing
Author: Liu, Gang
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 3
Year: 2017
Pages: 545-561
Summary lang: English
.
Category: math
.
Summary: This paper considers a distributed state estimation problem for multi-agent systems under state inequality constraints. We first give a distributed estimation algorithm by projecting the consensus estimate with help of the consensus-based Kalman filter (CKF) and projection on the surface of constraints. The consensus step performs not only on the state estimation but also on the error covariance obtained by each agent. Under collective observability and connective assumptions, we show that consensus of error covariance is bounded. Based on the Lyapunov method and projection, we provide and prove convergence conditions of the proposed algorithm and demonstrate its effectiveness via numerical simulations. (English)
Keyword: multi-agent systems
Keyword: distributed Kalman filter
Keyword: state constraints
Keyword: stability
MSC: 90B10
idZBL: Zbl 06819623
idMR: MR3684685
DOI: 10.14736/kyb-2017-3-0545
.
Date available: 2017-11-12T09:50:01Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146942
.
Reference: [1] Agniel, R. G., Jury, E. I: Almost sure boundedness of randomly sampled systems..SIAM J. Control 9 (1971), 372-384. MR 0304038, 10.1137/0309027
Reference: [2] Battistelli, G., Chisci, L.: Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability..Automatica 50 (2014), 707-718. MR 3173970, 10.1016/j.automatica.2013.11.042
Reference: [3] Bell, B. M., Burke, J. V., Pillonetto, G.: An inequality constrained nonlinear Kalman-Bucy smoother by interior point likelihood maximization..Automatica 45 (2009), 25-33. MR 2531490, 10.1016/j.automatica.2008.05.029
Reference: [4] Boyd, S., Vandenberghe, L.: Convex Optimization..Cambridge University Press, Cambridge 2004. Zbl 1058.90049, MR 2061575, 10.1017/cbo9780511804441
Reference: [5] Cattivelli, F., Sayed, A.: Diffusion strategies for distributed Kalman filtering and smoothing..IEEE Trans. Automat. Control 55 (2010), 2069-2084. MR 2722500, 10.1109/tac.2010.2042987
Reference: [6] Das, S., Moura, J. M. F.: Distributed Kalman filtering with dynamic observations consensus..IEEE Trans. Signal Process. 63 (2015), 4458-4473. MR 3375283, 10.1109/tsp.2015.2424205
Reference: [7] Godsil, C., Royle, G.: Algebraic Graph Theory..Springer-Verlag, New York 2001. Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9
Reference: [8] Goodwin, G. C., Seron, M. M., Doná, J. A. De: Constrained Control And Estimation: An Optimisation Approach..Springer-Verlag, New York 2006. MR 2085919, 10.1007/b138145
Reference: [9] Gupta, N., Hauser, R.: Kalman filtering with equality and inequality state constraints..arXiv preprint arXiv:0709.2791 MR 0426293,
Reference: [10] Hu, J., Hu, X.: Optimal target trajectory estimation and filtering using networked sensors..In: Proc. 27th Chinese Control Conference, Kunming 2008, 540-545. MR 2425665, 10.1109/chicc.2008.4605514
Reference: [11] Hu, J., Hu, X.: Nonlinear filtering in target tracking using cooperative mobile sensors..Automatica 46 (2010), 2041-2046. MR 2878229, 10.1016/j.automatica.2010.08.016
Reference: [12] Hu, C., Qin, W., He, B., Liu, G.: Distributed $H_{\infty}$ estimation for moving target under switching multi-agent network..Kybernetika 51 (2014), 814-829. MR 3445986, 10.14736/kyb-2015-5-0814
Reference: [13] Hu, J., Xie, L., Zhang, C.: Diffusion Kalman filtering based on covariance intersection..IEEE Trans. Signal Process. 60 (2012), 891-902. MR 2919485, 10.1109/tsp.2011.2175386
Reference: [14] Kamal, A. T., Farrell, J. A., Roy-Chowdhury, A. K.: Information weighted consensus filters and their application in distributed camera networks..IEEE Trans. Automat. Control 58 (2013), 3112-3125. MR 3152272, 10.1109/tac.2013.2277621
Reference: [15] Khan, U. A., Jadbabaie, A.: Collaborative scalar-gain estimators for potentially unstable social dynamics with limited communication..Automatica 50 (2014), 1909-1914. MR 3230893, 10.1016/j.automatica.2014.05.008
Reference: [16] Ko, S., Bitmead, R.: State estimation for linear systems with state equality constraints..Automatica 43 (2007), 1363-1368. MR 2320519, 10.1016/j.automatica.2007.01.017
Reference: [17] Matei, I., Baras, J. S.: Consensus-based linear distributed filtering..Automatica 48 (2012), 1776-1782. MR 2950429, 10.1016/j.automatica.2012.05.042
Reference: [18] Nedić, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks..IEEE Trans. Automat Control 55 (2010), 922-938. MR 2654432, 10.1109/tac.2010.2041686
Reference: [19] Olfati-Saber, R.: Distributed Kalman filtering for sensor networks..in Proc. IEEE Conference on Decision and Control, New Orleans 2007, pp. 5492-5498. 10.1109/cdc.2007.4434303
Reference: [20] Olfati-Saber, R.: Kalman-consensus filter: Optimality, stability, and performance..In: Proc. Joint IEEE Conference on Decision and Control and Chinese Control Conference, Shanghai 2009, pp. 7036-7042. 10.1109/cdc.2009.5399678
Reference: [21] Reif, K., Günther, S., Yaz, E., Unbehauen, R.: Stochastic stability of the discrete-time extended Kalman filter..IEEE Trans. Automat. Control 44 (1999), 714-728. MR 1684426, 10.1109/9.754809
Reference: [22] Shi, G., Johansson, K., Hong, Y.: Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets..IEEE Trans. Automatic Control 58 (2013), 610-622. MR 3029459, 10.1109/tac.2012.2215261
Reference: [23] Simon, D.: Kalman filtering with state constraints: a survey of linear and nonlinear algorithms..IET Control Theory Appl. 4 (2010), 1303-1318. MR 2757297, 10.1049/iet-cta.2009.0032
Reference: [24] Simon, D., Chia, T. L.: Kalman filtering with state equality constraints..IEEE Trans. Aerospace Electronic Systems 38 (2002), 128-136. 10.1109/7.993234
Reference: [25] Simon, D., Simon, D. L.: Kalman filtering with inequality constraints for turbofan engine health estimation..IEE Proc. Control Theory Appl. 153 (2006), 371-378. 10.1049/ip-cta:20050074
Reference: [26] Stanković, S. S., Stanković, M. S., Stipanović, D. M.: Consensus based overlapping decentralized estimation with missing observations and communication faults..Automatica 45 (2009), 1397-1406. MR 2879441, 10.1016/j.automatica.2009.02.014
Reference: [27] Tarn, T. J., Rasis, Y.: Observers for nonlinear stochastic systems..IEEE Trans. Automat. Control 21 (1976), 441-448. MR 0411794, 10.1109/tac.1976.1101300
Reference: [28] Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging..Syst. Control Lett. 53 (2004), 65-78. Zbl 1157.90347, MR 2077189, 10.1016/j.sysconle.2004.02.022
Reference: [29] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target under switching interconnection network..In: Proc. 12th International Conference on Control Automation Robotics Vision (ICARCV), Guangzhou 2012, pp. 1818-1823. 10.1109/icarcv.2012.6485124
Reference: [30] Zhou, Z., Fang, H., Hong, Y.: Distributed estimation for moving target based on state-consensus strategy..IEEE Trans. Automat. Control 58 (2013), 2096-2101. MR 3090041, 10.1109/tac.2013.2246476
.

Files

Files Size Format View
Kybernetika_53-2017-3_10.pdf 403.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo