Previous |  Up |  Next

Article

Title: Backstepping based nonlinear adaptive control for the extended nonholonomic double integrator (English)
Author: Abbasi, Waseem
Author: ur Rehman, Fazal
Author: Shah, Ibrahim
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 578-594
Summary lang: English
.
Category: math
.
Summary: In this paper a steering control algorithm for the Extended Nonholonomic Double Integrator is presented. An adaptive backstepping based controller is proposed which yields asymptotic stabilization and convergence of the closed loop system to the origin. This is achieved by transforming the original system into a new system which can be globally asymptotically stabilized. Once the new system is stabilized, the stability of the original system can be easily established. Stability of the closed loop system is analyzed on the basis of Lyapunov theory. The effectiveness of the proposed control algorithm is verified through numerical simulation and the results are compared to existing methods. (English)
Keyword: nonholonomic systems
Keyword: feedback stabilization
Keyword: systems with drift
Keyword: adaptive backstepping
Keyword: Lyapunov function
MSC: 93D15
idZBL: Zbl 06819625
idMR: MR3730253
DOI: 10.14736/kyb-2017-4-0578
.
Date available: 2017-11-12T09:52:41Z
Last updated: 2023-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146945
.
Reference: [1] Abbassi, W., Rehman, F.: Adaptive integral sliding mode stabilization of nonholonomic drift-free systems..Math. Problems Engrg. 2016 (2016), 1-11. MR 3576111, 10.1155/2016/9617283
Reference: [2] Aguiar, A. P., Atassi, A. N., Pascoal, A. M.: Regulation of a nonholonomic dynamic wheeled mobile robot with parametric modeling uncertainty using Lyapunov functions..In: Proc. 39th IEEE Conference on Decision and Control 3 (2000), 2995-3000. 10.1109/cdc.2000.914276
Reference: [3] Aguiar, A. P., Pascoal, A. M.: Stabilization of the extended nonholonomic double integrator via logic-based hybrid control..IFAC Proc. Vol. 33 (2000), 27, 351-356. 10.1016/s1474-6670(17)37954-5
Reference: [4] Astolfi, A.: Discontinuous control of the Brockett integrator..Europ. J. Control, 1, (1998), 49-63. 10.1016/s0947-3580(98)70099-8
Reference: [5] Bloch, A., Drakunov, S.: Stabilization and tracking in the nonholonomic integrator via sliding modes..Systems Control Lett. 2 (1996), 91-99. MR 1420406, 10.1016/s0167-6911(96)00049-7
Reference: [6] Brockett, R. W.: Asymptotic stability and feedback stabilization..In: Differential Geometric Control Theory (R. W. Brockett, R. S. Millman, and H. J. Sussman, eds.), Birkhauser, Boston 1983, pp. 181-191. Zbl 0528.93051, MR 0708502
Reference: [7] Dixon, W. E., Jiang, Z. P., Dawson, D. M.: Global exponential setpoint control of wheeled mobile robots: A Lyapunov approach..In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279. MR 1833045
Reference: [8] Escobar, G., Ortega, R., Reyhanoglu, M.: Regulation and tracking of the nonholonomic double integrator: A field-oriented control approach..Automatica 1 (1998), 125-131. MR 1614117, 10.1016/s0005-1098(97)00155-6
Reference: [9] Fang, F., Wei, L.: Backstepping-based nonlinear adaptive control for coal-fired utility boiler-turbine units..Appl. Energy 3 (2011), 814-824. 10.1016/j.apenergy.2010.09.003
Reference: [10] Godhavn, J-M., Egeland, O.: A Lyapunov approach to exponential stabilization of nonholonomic systems in power form..IEEE Trans. Automat. Control 7 (1997), 1028-1032. MR 1469849, 10.1109/9.599989
Reference: [11] Jiang, Z. P., Nijmeijer, H.: A recursive technique for tracking control of nonholonomic systems in chained form..In: Proc. 39th IEEE Conference on Decision and Control 2 (1999), 265-279. MR 1669982, 10.1109/9.746253
Reference: [12] Kolmanovsky, I., McClamroch, N. H.: Developments in nonholonomic control problems..IEEE Control Syst. 6 (1995), 20-36. 10.1109/37.476384
Reference: [13] Morin, P., Samson, C.: Control of Nonlinear Chained Systems: From the Routh-Hurwitz Stability Criterion to Time-Varying Exponential Stabilizers..Springer 2000. MR 1741954
Reference: [14] Pascoal, A. M., Aguiar, A. P.: Practical stabilization of the extended nonholonomic double integrator..In: Proc. 10th Mediterranean Conferenceon Control and Automation, 2002.
Reference: [15] Pomet, J. B.: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift..Systems Control Lett. 2 (1992), 147-158. MR 1149359, 10.1016/0167-6911(92)90019-o
Reference: [16] Rehman, F.: Steering control of nonholonomic systems with drift: The extended nonholonomic double integrator example..Nonlinear Analysis Theory Methods Appl. 8 (2005), 1498-1515. MR 2164937, 10.1016/j.na.2005.03.086
Reference: [17] Sun, L.-Y., Tong, S., Liu, Y.: Adaptive backstepping sliding mode H infinity control of static var compensator..IEEE Trans. Control Systems Technol. 5 (2011), 1178-1185. 10.1109/tcst.2010.2066975
Reference: [18] Wang, Z., Li., S., Fei, S.: Finite-time tracking control of a nonholonomic mobile robot..Asian J. Control 3 (2009), 344-357. 10.1002/asjc.112
Reference: [19] Zhou, J., Wen, C.: Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities, Interactions or Time-Variations..Springer 2008. MR 2391666
.

Files

Files Size Format View
Kybernetika_53-2017-4_2.pdf 524.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo