Previous |  Up |  Next

Article

Title: Derivatives of Hadamard type in scalar constrained optimization (English)
Author: Pastor, Karel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 717-729
Summary lang: English
.
Category: math
.
Summary: Vsevolod I. Ivanov stated (Nonlinear Analysis 125 (2015), 270-289) the general second-order optimality condition for the constrained vector problem in terms of Hadamard derivatives. We will consider its special case for a scalar problem and show some corollaries for example for ${\ell}$-stable at feasible point functions. Then we show the advantages of obtained results with respect to the previously obtained results. (English)
Keyword: $C^{1;1}$–function
Keyword: ${\ell }$–stable function
Keyword: generalized second-order derivative
Keyword: optimality conditions
MSC: 49J52
MSC: 49K10
idZBL: Zbl 06819632
idMR: MR3730260
DOI: 10.14736/kyb-2017-4-0717
.
Date available: 2017-11-12T10:04:00Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/146952
.
Reference: [1] Bednařík, D., Berková, A.: On some properties of l-stable functions..In: Proc. 14th WSEAS Inter. Conf. on Math. Methods, Comput. Techniques and Intell. Systems, (A J. Viamonte, ed.), Porto 2012.
Reference: [2] Bednařík, D., Pastor, K.: On second-order conditions in unconstrained optimization..Math. Program. (Ser. A) 113 (2008), 283-298. Zbl 1211.90276, MR 2375484, 10.1007/s10107-007-0094-8
Reference: [3] Bednařík, D., Pastor, K.: Differentiability properties of functions that are ${\ell}$-stable at a point..Nonlinear Anal. 69 (2008), 3128-3135. Zbl 1146.49017, MR 2452120, 10.1016/j.na.2007.09.006
Reference: [4] Bednařík, D., Pastor, K.: $\ell$-stable functions are continuous..Nonlinear Anal. 70 (2009), 2317-2324. MR 2498316, 10.1016/j.na.2008.03.011
Reference: [5] Bednařík, D., Pastor, K.: Fréchet approach in second-order optimization..App. Math. Lett. 22 (2009), 960-967. MR 2524094, 10.1016/j.aml.2009.01.019
Reference: [6] Bednařík, D., Pastor, K.: A note on second-order optimality conditions..Nonlinear Anal. 71 (2009), 1964-1969. MR 2524410, 10.1016/j.na.2009.01.035
Reference: [7] Bednařík, D., Pastor, K.: ${\ell}$-stable functions are continuous..Nonlinear Anal. 70 (2009), 2317-2324. MR 2498316, 10.1016/j.na.2008.03.011
Reference: [8] Bednařík, D., Pastor, K.: On l-stable mappings with values in infinite dimensional Banach spaces..Nonlinear Anal. 72 (2010), 1198-1209. MR 2577520, 10.1016/j.na.2009.08.004
Reference: [9] Bednařík, D., Pastor, K.: On second-order condition in constrained vector optimization..Nonlinear Anal. 74 (2011), 1372-1382. MR 2746815, 10.1016/j.na.2010.10.009
Reference: [10] Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization..SIAM J. Control Optim. 28 (1990), 789-809. Zbl 0714.49020, MR 1051624, 10.1137/0328045
Reference: [11] Chan, W. L., Huang, L. R., Ng, K. F.: On generalized second-order derivatives and Taylor expansions in nonsmooth optimization..SIAM J. Control Optim. 32 (1994), 591-611. Zbl 0801.49016, MR 1269984, 10.1137/s0363012992227423
Reference: [12] Dvorská, M., Pastor, K.: On comparison of $\ell$-stable vector optimization results..Math. Slovaca 64 (2014), 4, 1-18. MR 3255866, 10.2478/s12175-014-0252-4
Reference: [13] Dvorská, M., K., K. Pastor: Generalization of $C^{1,1}$ property in infinite dimension..Acta Math. Vietnam. 41 (2016), 265-275. MR 3506315, 10.1007/s40306-015-0129-9
Reference: [14] Demyanov, V. F., Rubinov, M.: Constructive Nonsmooth Analysis.Peter Lang, Frankfurt am Main 1995. MR 1325923
Reference: [15] Ginchev, I.: On scalar and vector $\ell$-stable functions..Nonlinear Anal. 74 (2011), 182-194. MR 2734988, 10.1016/j.na.2010.08.032
Reference: [16] Ginchev, I., Guerraggio, A.: Second-order conditions for constrained vector optimization problems with ${\ell}$-stable data..Optimization 60 (2011), 179-199. Zbl 1237.90221, MR 2772143, 10.1080/02331930903578718
Reference: [17] Ginchev, I., Guerraggio, A., Rocca, M.: From scalar to vector optimization..Appl. Math. 51 (2006), 5-36. Zbl 1164.90399, MR 2197320, 10.1007/s10492-006-0002-1
Reference: [18] Guerragio, A., Luc, D. T.: Optimality conditions for $C^{1,1}$ vector optimization problems..J. Optim. Theory Appl. 109 (2001), 615-629. MR 1835076, 10.1023/a:1017519922669
Reference: [19] Georgiev, P. G., Zlateva, N. P.: Second-order subdifferentials of $C^{1,1}$ functions and optimality conditions..Set-Valued Anal. 4 (1996), 101-117. MR 1394408, 10.1007/bf00425960
Reference: [20] Hiriart-Urruty, J. B., Strodiot, J. J., Nguyen, V. H.: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data..Appl. Math. Optim. 11 (1984), 43-56. MR 0726975, 10.1007/bf01442169
Reference: [21] Ivanov, V. I.: Second-optimality conditions with arbitrary nondifferentiable function in scalar and vector optimization..Nonlinear Anal. 125 (2015), 270-289. MR 3373585, 10.1016/j.na.2015.05.030
Reference: [22] Jahn, J.: Vector Optimization..Springer-Verlag, New York 2004. Zbl 1298.90092, MR 2058695, 10.1007/978-3-540-24828-6
Reference: [23] Jeyakumar, V., Luc, D. T.: Nonsmooth Vector Functions And Continuous Optimization..Springer, Berlin 2008. MR 2354918
Reference: [24] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming I: ${\ell}$-stability and set-valued directional derivatives..J. Math. Anal. Appl. 403 (2013), 695-702. MR 3037499, 10.1016/j.jmaa.2012.12.076
Reference: [25] Khanh, P. Q., Tuan, N. D.: Second-order optimality conditions with the envelope-like effect in nonsmooth multiobjective mathematical programming II: Optimality conditions..J. Math. Anal. Appl. 403 (2013), 703-714. Zbl 1291.90225, MR 3037500, 10.1016/j.jmaa.2012.12.075
Reference: [26] Liu, L., Křížek, M.: The second-order optimality conditions for nonlinear mathematical programming with $C^{1,1}$ data..Appl. Math. 42 (1997), 311-320. MR 1453935, 10.1023/a:1023068513188
Reference: [27] Liu, L., Neittaanmäki, P., Křížek, M.: Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$ data..Appl. Math. 45 (2000), 381-397. MR 1777017, 10.1023/a:1022272728208
Reference: [28] Li, S. J., Xu, S.: Sufficient conditions of isolated minimizers for constrained programming problems..Numer. Func. Anal. Optim. 31 (2010), 715-727. Zbl 1218.90214, MR 2682838, 10.1080/01630563.2010.490970
Reference: [29] Mordukhovich, B. S.: Variational Analysis and Generalized Differentiation, I: Basic Theory, II: Applications..Springer-Verlag, Berlin 2006. Zbl 1100.49002, MR 2191744
Reference: [30] Pastor, K.: A note on second-order optimality conditions..Nonlinear Anal. 71 (2009), 1964-1969. MR 2524410, 10.1016/j.na.2009.01.035
Reference: [31] Pastor, K.: Differentiability properties of ${\ell}$-stable vector functions in infinite-dimensional normed spaces..Taiwanese J. Math. 18 (2014), 187-197. MR 3162119, 10.11650/tjm.18.2014.2605
Reference: [32] Rockafellar, R. T.: Convex analysis..Princeton University Press, Princeton 1970. MR 0274683
Reference: [33] Rockafellar, R. T., Wets, R. J.-B.: Variational Analysis..Springer-Verlag, New York 1998. Zbl 0888.49001, 10.1007/978-3-642-02431-3
Reference: [34] Torre, D. L., Rocca, M.: Remarks on second order generalized derivatives for differentiable functions with Lipschitzian jacobian..Appl. Math. E-Notes 3 (2003), 130-137. MR 1995642
Reference: [35] Yang, X. Q.: On second-order directional derivatives..Nonlinear Anal. 26 (1996), 55-66. MR 1354791, 10.1016/0362-546x(94)00209-z
Reference: [36] Yang, X. Q.: On relations and applications of generalized second-order directional derivatives..Nonlinear Anal. 36 (1999), 595-614. MR 1673263, 10.1016/s0362-546x(98)00174-6
.

Files

Files Size Format View
Kybernetika_53-2017-4_9.pdf 349.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo