Previous |  Up |  Next

Article

Title: A note on star Lindelöf, first countable and normal spaces (English)
Author: Xuan, Wei-Feng
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 4
Year: 2017
Pages: 445-448
Summary lang: English
.
Category: math
.
Summary: A topological space $X$ is said to be star Lindelöf if for any open cover $\mathcal U$ of $X$ there is a Lindelöf subspace $A \subset X$ such that $\operatorname {St}(A, \mathcal U)=X$. The “extent” $e(X)$ of $X$ is the supremum of the cardinalities of closed discrete subsets of $X$. We prove that under $V=L$ every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under $\rm MA +\nobreak \neg CH$, which shows that a star Lindelöf, first countable and normal space may not have countable extent. (English)
Keyword: star Lindelöf space
Keyword: first countable space
Keyword: normal space
Keyword: countable extent
MSC: 54D20
MSC: 54E35
idZBL: Zbl 06819595
idMR: MR3739027
DOI: 10.21136/MB.2017.0012-17
.
Date available: 2017-11-20T15:03:57Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146980
.
Reference: [1] Bing, R. H.: Metrization of topological spaces.Can. J. Math. 3 (1951), 175-186. Zbl 0042.41301, MR 0043449, 10.4153/CJM-1951-022-3
Reference: [2] Engelking, R.: General Topology.Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [3] Fleissner, W. G.: Normal Moore spaces in the constructible universe.Proc. Am. Math. Soc. 46 (1974), 294-298. Zbl 0314.54028, MR 0362240, 10.2307/2039914
Reference: [4] Ginsburg, J., Woods, R. G.: A cardinal inequality for topological spaces involving closed discrete sets.Proc. Am. Math. Soc. 64 (1977), 357-360. Zbl 0398.54002, MR 0461407, 10.2307/2041457
Reference: [5] Hodel, R.: Cardinal functions I.Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 1-61. Zbl 0559.54003, MR 0776620
Reference: [6] Miller, A. W.: Special subsets of the real line.Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 201-233. Zbl 0588.54035, MR 0776624
Reference: [7] Tall, F. D.: Normality versus collectionwise normality.Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 685-732. Zbl 0552.54011, MR 0776634
Reference: [8] Douwen, E. K. van, Reed, G. M., Roscoe, A. W., Tree, I. J.: Star covering properties.Topology Appl. 39 (1991), 71-103. Zbl 0743.54007, MR 1103993, 10.1016/0166-8641(91)90077-Y
Reference: [9] Xuan, W. F., Shi, W. X.: Notes on star Lindelöf space.Topology Appl. 204 (2016), 63-69. Zbl 1342.54015, MR 3482703, 10.1016/j.topol.2016.02.009
.

Files

Files Size Format View
MathBohem_142-2017-4_7.pdf 200.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo