Previous |  Up |  Next

Article

Keywords:
harmonic map; biharmonic map; warped product
Summary:
In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.
References:
[1] Baird P.: Harmonic maps with symmetry, harmonic morphisms and deformation of metrics. Pitman Books Limited, Boston, MA, 1983, pp. 27–39. MR 0716320
[2] Baird P., Eells J.: A conservation law for harmonic maps. Lecture Notes in Math., 894, Springer, Berlin-New York, 1981, pp. 1–25. DOI 10.1007/BFb0096222 | MR 0655417 | Zbl 0485.58008
[3] Baird P., Wood J.C.: Harmonic Morphisms between Riemannian Manifolds. London Mathematical Society Monographs, 29, Oxford University Press, Oxford, 2003. MR 2044031 | Zbl 1055.53049
[4] Baird P., Kamissoko D.: On constructing biharmonic maps and metrics. Ann. Global Anal. Geom. 23 (2003), 65–75. DOI 10.1023/A:1021213930520 | MR 1952859 | Zbl 1027.31004
[5] Baird P., Fardoun A., Ouakkas S.: Conformal and semi-conformal biharmonic maps. Ann. Global Anal. Geom. 34 (2008), 403–414. DOI 10.1007/s10455-008-9118-8 | MR 2447908 | Zbl 1158.53049
[6] Balmus A.: Biharmonic properties and conformal changes. An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 50 (2004), 361–372. MR 2131943 | Zbl 1070.58016
[7] Balmus A., Montaldo S., Oniciuc C.: Biharmonic maps between warped product manifolds. J. Geom. Phys. 57 (2008), 449–466. DOI 10.1016/j.geomphys.2006.03.012 | MR 2271198 | Zbl 1108.58011
[8] Bertola M., Gouthier D.: Lie triple systems and warped products. Rend. Mat. Appl. (7) 21 (2001), 275–293. MR 1884948 | Zbl 1057.53020
[9] Eells J., Lemaire L.: A report on harmonic maps. Bull. London Math. Soc. 16 (1978), 1–68. DOI 10.1112/blms/10.1.1 | MR 0495450 | Zbl 0401.58003
[10] Eells J., Lemaire L.: Another report on harmonic maps. Bull. London Math. Soc. 20 (1988), 385–524. DOI 10.1112/blms/20.5.385 | MR 0956352 | Zbl 0669.58009
[11] Eells J., Lemaire L.: Selected Topics in Harmonic Maps. CNMS Regional Conference Series of the National Sciences Foundation, November 1981. MR 0703510 | Zbl 0515.58011
[12] Eells J., Ratto A.: Harmonic Maps and Minimal Immersions with Symmetries. Princeton University Press, Princeton, NJ, 1993. MR 1242555 | Zbl 0783.58003
[13] Jiang G.Y.: $2$-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A 7 (1986), 389–402. MR 0886529 | Zbl 1200.58015
[14] Djaa N.E.H., Boulal A., Zagane A.: Generalized warped product manifolds and biharmonic maps. Acta Math. Univ. Comenian. 81 (2012), no. 2, 283–298. MR 2975295 | Zbl 1274.53093
[15] Lu W.J.: Geometry of warped product manifolds and its five applications. PhD Thesis, Zhejiang University, 2013.
[16] Lu W.J.: $f$-Harmonic maps of doubly warped product manifolds. Appl. Math. J. Chinese Univ. Ser. B 28 (2013), no. 2, 240–252. DOI 10.1007/s11766-013-2969-1 | MR 3066461
[17] Oniciuc C.: New examples of biharmonic maps in spheres. Colloq. Math. 97 (2003), 131–139. DOI 10.4064/cm97-1-12 | MR 2010548 | Zbl 1058.58003
[18] Ouakkas S.: Biharmonic maps, conformal deformations and the Hopf maps. Diff. Geom. Appl. 26 (2008), 495–502. DOI 10.1016/j.difgeo.2008.04.006 | MR 2458275 | Zbl 1159.58009
[19] Ou Y.-L.: p-harmonic morphisms, biharmonic morphisms, and non-harmonic biharmonic maps. J. Geom. Phys. 56 (2006), no. 3, 358–374. DOI 10.1016/j.geomphys.2005.02.005 | MR 2171890
[20] Perktas S.Y., Kilic E.: Biharmonic maps between doubly warped product manifolds. Balkan J. Geom. Appl. 15 (2010), no. 2, 159–170. MR 2608547 | Zbl 1225.58008
Partner of
EuDML logo