Previous |  Up |  Next

Article

Title: Distributed event-triggered algorithm for optimal resource allocation of multi-agent systems (English)
Author: Yu, Weiyong
Author: Deng, Zhenhua
Author: Zhou, Hongbing
Author: Zeng, Xianlin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 747-764
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with solving the distributed resource allocation optimization problem by multi-agent systems over undirected graphs. The optimization objective function is a sum of local cost functions associated to individual agents, and the optimization variable satisfies a global network resource constraint. The local cost function and the network resource are the private data for each agent, which are not shared with others. A novel gradient-based continuous-time algorithm is proposed to solve the distributed optimization problem. We take an event-triggered communication strategy and an event-triggered gradient measurement strategy into account in the algorithm. With strongly convex cost functions and locally Lipschitz gradients, we show that the agents can find the optimal solution by the proposed algorithm with exponential convergence rate, based on the construction of a suitable Lyapunov function. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed scheme. (English)
Keyword: distributed optimization
Keyword: event-triggered strategy
Keyword: multi-agent systems
Keyword: resource allocation
MSC: 37N40
MSC: 90C26
MSC: 93A14
idZBL: Zbl 06861622
idMR: MR3750101
DOI: 10.14736/kyb-2017-5-0747
.
Date available: 2018-02-26T11:36:41Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147090
.
Reference: [1] Beck, A., Nedić, A., Ozdaglar, A., Teboulle, M.: An $O(1/k)$ gradient method for network resource allocation problems..IEEE Trans. Control Network Systems 1 (2014), 64-74. MR 3245002, 10.1109/tcns.2014.2309751
Reference: [2] Chen, W., Ren, W.: Event-triggered zero-gradient-sum distributed consensus optimization over directed networks..Automatica 65 (2016), 90-97. Zbl 1328.93167, MR 3447697, 10.1016/j.automatica.2015.11.015
Reference: [3] Deng, Z., Wang, X., Hong, Y.: Distributed optimization design with triggers for disturbed continuous-time multi-agent systems..IET Control Theory Appl. 11 (2017), 282-290. MR 3675134, 10.1049/iet-cta.2016.0795
Reference: [4] Ghadimi, E., Shames, I., Johansson, M.: Multi-step gradient methods for networked optimization..IEEE Trans. Signal Processing 61 (2013), 5417-5429. 10.1109/tsp.2013.2278149
Reference: [5] Godsil, C., Royle, G.: Algebraic Graph Theory..Springer-Verlag, New York 2001. Zbl 0968.05002, MR 1829620, 10.1007/978-1-4613-0163-9
Reference: [6] Gao, Y., Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology..IEEE Trans. Automat. Control 56 (2011), 1226-1231. MR 2815935, 10.1109/tac.2011.2112472
Reference: [7] Ho, Y. C., Servi, L., Suri, R.: A class of center-free resource allocation algorithms..Large Scale Systems 1 (1980), 51-62. MR 0617154
Reference: [8] Khalil, H. K.: Nonlinear Systems. Third edition..Prentice Hall, New Jersey 2002.
Reference: [9] Kia, S. S., Cortés, J., Martínez, S.: Distributed convex optimization via continuous-time coordinate alorithms with discrete-time communication..Automatica 55 (2015), 254-264. MR 3336675, 10.1016/j.automatica.2015.03.001
Reference: [10] Lehmann, D., Lunze, J.: Event-based control with communication delays and packet losses..Int. J. Control 85 (2012), 563-577. MR 2913571, 10.1080/00207179.2012.659760
Reference: [11] Lakshmanan, H., Farias, D. P.: Decentralized resource allocation in dynamic networks of agents..SIAM J. Optim. 19 (2008), 911-940. MR 2448920, 10.1137/060662228
Reference: [12] Hu, J., Chen, G., Li, H.: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays..Kybernetika 47 (2011), 630-643. Zbl 1227.93008, MR 2884865
Reference: [13] Nedić, A., Ozdaglar, A., Parrilo, P. A.: Constrained consensus and optimization in multi-agent networks..IEEE Trans. Automat. Control 55 (2010), 922-938. MR 2654432, 10.1109/tac.2010.2041686
Reference: [14] Lou, Y., Shi, G., Johansson, K., Hong, Y.: Approximate projected consensus for convex interesection computation: convergence analysis and critical error angle..IEEE Trans. Automat. Control 59 (2014), 1722-1736. MR 3232068, 10.1109/tac.2014.2309261
Reference: [15] Rockafellar, R. T.: Convex Analysis..Princeton University Press, Princeton 1972. Zbl 1011.49013, MR 0274683
Reference: [16] Ruszczynski, A. P.: Nonlinear Optimization..Princeton University Press, Princeton 2006. MR 2199043
Reference: [17] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks..IEEE Trans. Automat. Control 52 (2007), 1680-1685. MR 2352444, 10.1109/tac.2007.904277
Reference: [18] Wang, X., Yi, P., Hong, Y.: Dynamic optimization for multi-agent systems with external disturbances..Control Theory Technol. 12 (2014), 132-138. MR 3199533, 10.1007/s11768-014-0036-y
Reference: [19] Wang, X., Deng, Z., Ma, S., Du, X.: Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems..Kybernetika 1 (2017), 179-194. MR 3638563
Reference: [20] Xiao, L., Boyd, S.: Optimal scaling of a gradient method for distributed resource allocation..J. Optim. Theory and Appl. 129 (2006), 469-488. MR 2281152, 10.14736/kyb-2017-1-0179
Reference: [21] Zhang, Y., Hong, Y.: Distributed event-triggered tracking control of multi-agent systems with active leader..In: Proc. 10th IEEE World Congress on Intelligent Control and Automation 2012, pp. 1453-1458. 10.1109/wcica.2012.6358108
Reference: [22] Zhang, Y., Lou, Y., Hong, Y., Xie, L.: Distributed projection-based algorithms for source localization in wireless sensor networks..IEEE Trans. Wireless Communications 14 (2015), 3131-3142. MR 2960500, 10.1109/twc.2015.2402672
Reference: [23] Yi, P., Hong, Y., Liu, F.: Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and application to economic dispatch of power systems..Automatica 74 (2016), 259-269. MR 3569392, 10.1016/j.automatica.2016.08.007
.

Files

Files Size Format View
Kybernetika_53-2017-5_1.pdf 605.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo