Previous |  Up |  Next

Article

Title: Further results on the generalized cumulative entropy (English)
Author: Di Crescenzo, Antonio
Author: Toomaj, Abdolsaeed
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 959-982
Summary lang: English
.
Category: math
.
Summary: Recently, a new concept of entropy called generalized cumulative entropy of order $n$ was introduced and studied in the literature. It is related to the lower record values of a sequence of independent and identically distributed random variables and with the concept of reversed relevation transform. In this paper, we provide some further results for the generalized cumulative entropy such as stochastic orders, bounds and characterization results. Moreover, some characterization results are derived for the dynamic generalized cumulative entropy. Finally, it is shown that the empirical generalized cumulative entropy of an exponential distribution converges to normal distribution. (English)
Keyword: generalized cumulative entropy
Keyword: lower record values
Keyword: reversed relevation transform
Keyword: stochastic orders
Keyword: parallel system
MSC: 60E15
MSC: 62B10
MSC: 62N05
idZBL: Zbl 06861634
idMR: MR3750113
DOI: 10.14736/kyb-2017-5-0959
.
Date available: 2018-02-26T11:55:31Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147103
.
Reference: [1] Arnold, B. C., Balakrishnan, N., Nagaraja, H. N.: A First Course in Order Statistics..Wiley and Sons, New York 1992. MR 1178934, 10.1137/1.9780898719062
Reference: [2] Asadi, M.: A new measure of association between random variables.. 10.1007/s00184-017-0620-5
Reference: [3] Bagai, L., Kochar, S. C.: On tail ordering and comparison of failure rates..Comm. Stat. Theor. Meth. 15 (1986), 1377-1388. MR 0836602, 10.1080/03610928608829189
Reference: [4] Baratpour, S.: Characterizations based on cumulative residual entropy of first-order statistics..Comm. Stat. Theor. Meth. 39 (2010), 3645-3651. MR 2747631, 10.1080/03610920903324841
Reference: [5] Barlow, R. E., Proschan, F.: Statistical Theory of Reliability and Life Testing..Holt, Rinehart and Winston, New York 1975. MR 0438625
Reference: [6] Bartoszewicz, J.: On a representation of weighted distributions..Stat. Prob. Lett. 79 (2009), 1690-1694. MR 2547939, 10.1016/j.spl.2009.04.007
Reference: [7] Baxter, L. A.: Reliability applications of the relevation transform..Nav. Res. Logist. Q. 29 (1982), 323-330. MR 0681055, 10.1002/nav.3800290212
Reference: [8] Block, H. W., Savits, T. H., Singh, H.: The reversed hazard rate function..Probab. Engrg. Inform. Sci. 12 (1998), 69-90. MR 1492141, 10.1017/s0269964800005064
Reference: [9] Burkschat, M., Navarro, J.: Asymptotic behavior of the hazard rate in systems based on sequential order statistics..Metrika 77 (2014), 965-994. MR 3268630, 10.1007/s00184-013-0481-5
Reference: [10] Chandler, K. N.: The distribution and frequency of record values..J. Royal Stat. Soc. B 14 (1952), 220-228. MR 0053463
Reference: [11] Chandra, N. K., Roy, D.: Some results on reversed hazard rate..Probab. Engrg. Inform. Sci. 15 (2001), 95-102. MR 1825537, 10.1017/s0269964801151077
Reference: [12] Crescenzo, A. Di: A probabilistic analogue of the mean value theorem and its applications to reliability theory..J. Appl. Prob. 36 (1999), 706-719. MR 1737047, 10.1239/jap/1029349973
Reference: [13] Crescenzo, A. Di, Longobardi, M.: Entropy-based measure of uncertainty in past lifetime distributions..J. Appl. Prob. 39 (2002), 434-440. MR 1908960, 10.1239/jap/1025131441
Reference: [14] Crescenzo, A. Di, Longobardi, M.: On cumulative entropies..J. Stat. Plan. Infer. 139 (2009), 4072-4087. MR 2558351, 10.1016/j.jspi.2009.05.038
Reference: [15] Crescenzo, A. Di, Martinucci, B., Mulero, J.: A quantile-based probabilistic mean value theorem..Probab. Engrg. Inform. Sci. 30 (2016), 261-280. MR 3478845, 10.1017/s0269964815000376
Reference: [16] Crescenzo, A. Di, Toomaj, A.: Extensions of the past lifetime and its connections to the cumulative entropy..J. Appl. Prob. 52 (2015), 1156-1174. MR 3439178, 10.1239/jap/1450802759
Reference: [17] Hwang, J. S., Lin, G. D.: On a generalized moment problem II..Proc. Amer. Math. Soc. 91 (1984), 577-580. MR 0746093, 10.1090/s0002-9939-1984-0746093-4
Reference: [18] Kamps, U.: Characterizations of distributions by recurrence relations and identities for moments of order statistics..In: Order Statistics: Theory and Methods. Handbook of Statistics 16 (N. Balakrishnan and C. R. Rao, eds.), Elsevier, Amsterdam 1998, pp. 291-311. MR 1668749, 10.1016/s0169-7161(98)16012-1
Reference: [19] Kapodistria, S., Psarrakos, G.: Some extensions of the residual lifetime and its connection to the cumulative residual entropy,.Probab. Engrg. Inform. Sci. 26 (2012), 129-146. MR 2880265, 10.1017/s0269964811000271
Reference: [20] Kayal, S.: On generalized cumulative entropies..Probab. Engrg. Inform. Sci. 30 (2016), 640-662. MR 3569139, 10.1017/s0269964816000218
Reference: [21] Kayal, S.: On weighted generalized cumulative residual entropy of order $n$..Meth. Comp. Appl. Prob., online first (2017). 10.1007/s11009-017-9569-0
Reference: [22] Klein, I., Mangold, B., Doll, M.: Cumulative paired $\phi$-entropy..Entropy 18 (2016), 248. MR 3550258, 10.3390/e18070248
Reference: [23] Krakowski, M.: The relevation transform and a generalization of the Gamma distribution function..Rev. Française Automat. Informat. Recherche Opérationnelle 7 (1973), 107-120. MR 0329175, 10.1051/ro/197307v201071
Reference: [24] Li, Y., Yu, L., Hu, T.: Probability inequalities for weighted distributions..J. Stat. Plan. Infer. 142 (2012), 1272-1278. MR 2879771, 10.1016/j.jspi.2011.11.023
Reference: [25] Muliere, P., Parmigiani, G., Polson, N.: A note on the residual entropy function..Probab. Engrg. Inform. Sci. 7 (1993), 413-420. 10.1017/s0269964800003016
Reference: [26] Navarro, J., Aguila, Y. del, Asadi, M.: Some new results on the cumulative residual entropy..J. Stat. Plan. Infer. 140 (2010), 310-322. MR 2568141, 10.1016/j.jspi.2009.07.015
Reference: [27] Navarro, J., Psarrakos, G.: Characterizations based on generalized cumulative residual entropy functions..Comm. Stat. Theor. Meth. 46 (2017), 1247-1260. MR 3565622, 10.1080/03610926.2015.1014111
Reference: [28] Navarro, J., Rubio, R.: Comparisons of coherent systems with non-identically distributed components..J. Stat. Plann. Infer. 142 (2012), 1310-1319. MR 2891483, 10.1016/j.jspi.2011.12.008
Reference: [29] Navarro, J., Sunoj, S. M., Linu, M. N.: Characterizations of bivariate models using dynamic Kullback-Leibler discrimination measures..Stat. Prob. Lett. 81 (2011), 1594-1598. MR 2832917, 10.1016/j.spl.2011.05.016
Reference: [30] Psarrakos, G., Navarro, J.: Generalized cumulative residual entropy and record values..Metrika 76 (2013), 623-640. MR 3078811, 10.1007/s00184-012-0408-6
Reference: [31] Psarrakos, G., Toomaj, A.: On the generalized cumulative residual entropy with applications in actuarial science..J. Comput. Appl. Math. 309 (2017), 186-199. MR 3539777, 10.1016/j.cam.2016.06.037
Reference: [32] Rao, M.: More on a new concept of entropy and information..J. Theoret. Probab. 18 (2005), 967-981. MR 2289942, 10.1007/s10959-005-7541-3
Reference: [33] Rao, M., Chen, Y., Vemuri, B., Fei, W.: Cumulative residual entropy: a new measure of information..IEEE Trans. Inform. Theory 50 (2004), 1220-1228. MR 2094878, 10.1109/tit.2004.828057
Reference: [34] Rezaei, M., Gholizadeh, B., Izadkhah, S.: On relative reversed hazard rate order..Comm. Stat. Theor. Meth. 44 (2015), 300-308. MR 3292595, 10.1080/03610926.2012.745559
Reference: [35] Shaked, M., Shanthikumar, J. G.: Stochastic Orders and Their Applications..Academic Press, San Diego 2007. MR 1278322
Reference: [36] Shannon, C. E.: A mathematical theory of communication..Bell. Syst. Tech. J. 27 (1948), 379-423 and 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb01338.x
Reference: [37] Sordo, M., Suarez-Llorens, A.: Stochastic comparisons of distorted variability measures..Insur. Math. Econ. 49 (2011), 11-17. MR 2811889, 10.1016/j.insmatheco.2011.01.014
Reference: [38] Toomaj, A., Crescenzo, A. Di, Doostparast, M.: Some results on information properties of coherent systems..Appl. Stoch. Mod. Bus. Ind., online first (2017). 10.1002/asmb.2277
.

Files

Files Size Format View
Kybernetika_53-2017-5_13.pdf 503.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo