Previous |  Up |  Next

Article

Title: A dispersion inequality in the Hankel setting (English)
Author: Ghobber, Saifallah
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 1
Year: 2018
Pages: 227-241
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory. (English)
Keyword: time-frequency concentration
Keyword: windowed Hankel transform
Keyword: Shapiro's uncertainty principles
MSC: 42C20
MSC: 45P05
MSC: 94A12
idZBL: Zbl 06861577
idMR: MR3783595
DOI: 10.21136/CMJ.2018.0445-16
.
Date available: 2018-03-19T10:29:41Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147131
.
Reference: [1] Bowie, P. C.: Uncertainty inequalities for Hankel transforms.SIAM J. Math. Anal. 2 (1971), 601-606. Zbl 0235.44002, MR 0304983, 10.1137/0502059
Reference: [2] Czaja, W., Gigante, G.: Continuous Gabor transform for strong hypergroups.J. Fourier Anal. Appl. 9 (2003), 321-339. Zbl 1037.42031, MR 1999563, 10.1007/s00041-003-0017-x
Reference: [3] Ghobber, S.: Phase space localization of orthonormal sequences in $L_\alpha^2(\Bbb R_+)$.J. Approx. Theory 189 (2015), 123-136. Zbl 1303.42015, MR 3280675, 10.1016/j.jat.2014.10.008
Reference: [4] Ghobber, S., Omri, S.: Time-frequency concentration of the windowed Hankel transform.Integral Transforms Spec. Funct. 25 (2014), 481-496. Zbl 1293.42005, MR 3172059, 10.1080/10652469.2013.877009
Reference: [5] Lamouchi, H., Omri, S.: Time-frequency localization for the short time Fourier transform.Integral Transforms Spec. Funct. 27 (2016), 43-54. Zbl 1334.42022, MR 3417389, 10.1080/10652469.2015.1092439
Reference: [6] Levitan, B. M.: Expansion in Fourier series and integrals with Bessel functions.Uspekhi Matem. Nauk (N.S.) 6 (1951), 102-143 Russian. Zbl 0043.07002, MR 0049376
Reference: [7] Malinnikova, E.: Orthonormal sequences in $L^2(\Bbb R^d)$ and time frequency localization.J. Fourier Anal. Appl. 16 (2010), 983-1006. Zbl 1210.42020, MR 2737766, 10.1007/s00041-009-9114-9
Reference: [8] Shapiro, H. S.: Uncertainty principles for basis in $L^2(\mathbb R)$.Proc. of the Conf. on Harmonic Analysis and Number Theory, Marseille-Luminy, 2005 CIRM.
.

Files

Files Size Format View
CzechMathJ_68-2018-1_14.pdf 316.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo