| Title: | A dispersion inequality in the Hankel setting (English) | 
| Author: | Ghobber, Saifallah | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 68 | 
| Issue: | 1 | 
| Year: | 2018 | 
| Pages: | 227-241 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory. (English) | 
| Keyword: | time-frequency concentration | 
| Keyword: | windowed Hankel transform | 
| Keyword: | Shapiro's uncertainty principles | 
| MSC: | 42C20 | 
| MSC: | 45P05 | 
| MSC: | 94A12 | 
| idZBL: | Zbl 06861577 | 
| idMR: | MR3783595 | 
| DOI: | 10.21136/CMJ.2018.0445-16 | 
| . | 
| Date available: | 2018-03-19T10:29:41Z | 
| Last updated: | 2020-07-06 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/147131 | 
| . | 
| Reference: | [1] Bowie, P. C.: Uncertainty inequalities for Hankel transforms.SIAM J. Math. Anal. 2 (1971), 601-606. Zbl 0235.44002, MR 0304983, 10.1137/0502059 | 
| Reference: | [2] Czaja, W., Gigante, G.: Continuous Gabor transform for strong hypergroups.J. Fourier Anal. Appl. 9 (2003), 321-339. Zbl 1037.42031, MR 1999563, 10.1007/s00041-003-0017-x | 
| Reference: | [3] Ghobber, S.: Phase space localization of orthonormal sequences in $L_\alpha^2(\Bbb R_+)$.J. Approx. Theory 189 (2015), 123-136. Zbl 1303.42015, MR 3280675, 10.1016/j.jat.2014.10.008 | 
| Reference: | [4] Ghobber, S., Omri, S.: Time-frequency concentration of the windowed Hankel transform.Integral Transforms Spec. Funct. 25 (2014), 481-496. Zbl 1293.42005, MR 3172059, 10.1080/10652469.2013.877009 | 
| Reference: | [5] Lamouchi, H., Omri, S.: Time-frequency localization for the short time Fourier transform.Integral Transforms Spec. Funct. 27 (2016), 43-54. Zbl 1334.42022, MR 3417389, 10.1080/10652469.2015.1092439 | 
| Reference: | [6] Levitan, B. M.: Expansion in Fourier series and integrals with Bessel functions.Uspekhi Matem. Nauk (N.S.) 6 (1951), 102-143 Russian. Zbl 0043.07002, MR 0049376 | 
| Reference: | [7] Malinnikova, E.: Orthonormal sequences in $L^2(\Bbb R^d)$ and time frequency localization.J. Fourier Anal. Appl. 16 (2010), 983-1006. Zbl 1210.42020, MR 2737766, 10.1007/s00041-009-9114-9 | 
| Reference: | [8] Shapiro, H. S.: Uncertainty principles for basis in $L^2(\mathbb R)$.Proc. of the Conf. on Harmonic Analysis and Number Theory, Marseille-Luminy, 2005 CIRM. | 
| . |