Previous |  Up |  Next

Article

Title: Adaptive high gain observer extension and its application to bioprocess monitoring (English)
Author: Čelikovský, Sergej
Author: Torres-Muñoz, Jorge Antonio
Author: Dominguez-Bocanegra, Alma Rosa
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 1
Year: 2018
Pages: 155-174
Summary lang: English
.
Category: math
.
Summary: The adaptive version of the high gain observer for the strictly triangular systems subjected to constant unknown disturbances is proposed here. The adaptive feature is necessary due to the fact that the unknown disturbance enters in a way that cannot be suppressed by the high gain technique. The developed observers are then applied to a culture of microorganism in a bioreactor, namely, to the model of the continuous culture of Spirulina maxima. It is a common practice that just the biomass (or substrate) concentration is directly measured as the output of the process for monitoring and control purposes. This paper thereby shows both by theoretical analysis and numerical simulation that the adaptive high-gain observers offer a realistic option of online software sensors for substrate estimation. (English)
Keyword: adaptive observers
Keyword: nonlinear systems
Keyword: bioprocess
MSC: 90C46
MSC: 93C95
idZBL: Zbl 06861619
idMR: MR3780961
DOI: 10.14736/kyb-2018-1-0155
.
Date available: 2018-03-26T19:37:29Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147156
.
Reference: [1] Abbaszadeh, M., Marquez, H. J.: A generalized framework for robust nonlinear Hinfty filtering of Lipschitz descriptor systems with parametric and nonlinear uncertainties..Automatica 48 (2012), 5, 894-900. 10.1016/j.automatica.2012.02.033
Reference: [2] Agrawal, P., Lim, H.: Analyses of various control schemes for continuous bioreactors..Advances in Biochemical Engineering/ Biotechnology 30 (1984), 61-90. 10.1007/bfb0006380
Reference: [3] Bastin, G., Gevers, M.: Stable adaptive observers for nonlinear time-varying systems..IEEE Trans. Automat. Control 33 (1988), 7, 650-658. 10.1109/9.1273
Reference: [4] Bejarano, F., Fridman, L.: High order sliding mode observer for linear systems with unbounded unknown inputs..Int. J. Control 83 (2010), 1920-1929. MR 2724205, 10.1080/00207179.2010.501386
Reference: [5] Besancon, G., Leon-Morales, J. de, Huerta-Guevara, O.: On adaptive observers for state affine systems..Int. J. Control 79 (2006), 6, 581-591. MR 2216743, 10.1080/00207170600552766
Reference: [6] al., A. R. Bocanegra-Domínguez et: Estudio teórico práctico de la remoción de contaminantes presentes en el río de Los Remedios, Estado de México..Tecnología y Ciencias del Agua 24.2 (2009), 81-91. (In Spanish)
Reference: [7] Bornard, G., Celle-Couenne, F., Gilles, G.: Observability and Observers. In: Nonlinear Systems - T.1, ‘Modeling and Estimation’..Chapman and Hall, London 1995, pp. 173-216. MR 1359309, 10.1007/978-1-4615-2047-4_6
Reference: [8] Canizares, R. O., Domínguez, A. R.: Growth of Spirulina maxima on swine waste..Bioresource Technol. 45 (1993), 1, 73-75. 10.1016/0960-8524(93)90148-5
Reference: [9] Diop, S., Fliess, M.: Nonlinear observability, identifiability, and persistent trajectories..In: Proc. 30th IEEE Conference on Decision and Control 1 (1991), pp. 714-719. 10.1109/cdc.1991.261405
Reference: [10] Efimov, D., Fridman, L.: Global sliding-mode observer with adjusted gains for locally Lipschitz systems..Automatica 47 (2011), 3, 565-570. 10.1016/j.automatica.2010.12.003
Reference: [11] Farza, M., Bouraou, I., Menard, T., Abdennou, R., M'Saad, M.: Adaptive observers for a class of uniformly observable systems with nonlinear parametrization and sampled outputs..Automatica 50 (2014), 2951-2960. MR 3276636, 10.1016/j.automatica.2014.10.032
Reference: [12] Farza, M., M'saad, M., Maatou, T., Kamoun, M.: Adaptive observers for nonlinearly parameterized class of nonlinear systems..Automatica 45 (2009), 2292-2299. MR 2890790, 10.1016/j.automatica.2009.06.008
Reference: [13] Fridman, L., Shtessel, Y., Edwards, C., Yan, X.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems..Int. J. Robust Nonlinear Control 18 (2008), 399-412. MR 2392130, 10.1002/rnc.1198
Reference: [14] Gauthier, J. P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors..IEEE Trans. Automat. Control 37 (1991), 875-880. Zbl 0775.93020, 10.1109/9.256352
Reference: [15] Gerd, L., Narendra, K.: An adaptive observer and identifier for a linear system..IEEE Trans. Automat. Control 18 (1973), 5, 496-499. 10.1109/tac.1973.1100369
Reference: [16] Guoping, L., Ho, D: Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach..IEEE Trans. Circuits Systems II: Express Briefs 53 (2006), 7, 563-567. 10.1109/tcsii.2006.875332
Reference: [17] Hammouri, H., Nadri, M.: An observer design for a class of implicit systems..Systems Control Lett. 62 (2013), 3, 256-261. MR 3015290, 10.1016/j.sysconle.2012.11.001
Reference: [18] Hermann, R., Krener, A.: Nonlinear controllability and observability..IEEE Trans. Automat. Control 22 (1977), 5, 728-740. 10.1109/tac.1977.1101601
Reference: [19] Hamid-Reza, K., Zapateiro, M., Luo, N.: A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations..J. Franklin Inst. 347 (2010), 6, 957-973. 10.1016/j.jfranklin.2010.03.004
Reference: [20] Karimi, H. R., Zapateiro, M., N., Luo: A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations..J. Franklin Inst. 347 (2010), 6, 957-973. MR 2653874, 10.1016/j.jfranklin.2010.03.004
Reference: [21] Khalil, H.: Nonlinear Systems. Third edition..Prentice Hall, Englewood Cliffs, NJ 2002.
Reference: [22] Khosrowjerdi, M. J.: Mixed H2/Hinfty approach to fault-tolerant controller design for Lipschitz non-linear systems..IET Control Theory A. 5 (2011), 2, 299-307. 10.1049/iet-cta.2009.0556
Reference: [23] Kreisselmeier, G.: Adaptive observers with exponential rate of convergence..IEEE Trans. Automat. Control 22 (1977), 1, 2-8. MR 0444142, 10.1109/tac.1977.1101401
Reference: [24] Lafon, F., Busvelle, E., Gauthier, J. P.: An adaptive high-gain observer for wastewater treatment systems..Journal Process Control 21 (2011), 893-900. 10.1016/j.jprocont.2011.03.006
Reference: [25] Liang, X., Jiangfeng, Z., Xiaohua, X.: Adaptive synchronization for generalized Lorenz systems..IEEE Trans. Automat. Control 53 (2008), 7, 1740-1746. MR 2446392, 10.1109/tac.2008.928318
Reference: [26] al., F. Mairet et: Modelling neutral lipid production by the microalga Isochrysis aff. galbana under nitrogen limitation..Bioresource Technol. 102.1 (2011), 142-149. 10.1016/j.biortech.2010.06.138
Reference: [27] Marino, R., Tomei, P.: Nonlinear Control Design. Geometric, Adaptive and Robust Approach..Prentice Hall, Englewood Cliffs, NJ 1995.
Reference: [28] Marino, R., Tomei, P.: Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems..IEEE Trans. Automat. Control 40 (1995), 7, 1300-1304. MR 1344052, 10.1109/9.400471
Reference: [29] Raghavan, S., Hedrick, J.: Observer design for a class of nonlinear systems..Int. J. Control 59 (1994), 2, 515-528. Zbl 0802.93007, MR 1261285, 10.1080/00207179408923090
Reference: [30] Rajamani, R.: Observers for Lipschitz nonlinear systems..IEEE Trans. Automat. Control 43 (1998), 3, 397-401. Zbl 0905.93009, 10.1109/9.661604
Reference: [31] Rodríguez-Mata, A., Torres-Muñoz, J., Domínguez, A. R., Hernandez-Villagran, D., Čelikovský, S.: Nonlinear high-gain observers with integral action: Application to bioreactors..In: Proc. 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Cancun 2011, pp. 444-449. 10.1109/iceee.2011.6106611
Reference: [32] Sanchez-Torres, J., Loukianov, G., Moreno, J., Drakunov, S. V.: An equivalent control based sliding mode observer using high order uniform robust sliding operators..In: Proc. American Control Conference, Montreal 2012, pp. 6160-6165.
Reference: [33] Travieso, L., Sánchez, E., Bora, R.: Evaluation of laboratory and full-scale microalgae pond for tertiary treament of piggery wastes..Enviromental Technol. 25 (2004), 565-576. 10.1080/09593330.2004.9619347
Reference: [34] Wu, H.: A class of adaptive robust state observers with simpler structure for uncertain non linear systems with time varying delays..IET Control Theory Appl. 7 (2013), 218-222. 10.1049/iet-cta.2012.0318
Reference: [35] Yong-Hong, L., Zhou, Y.: Non-fragile observer-based robust control for a class of fractional-order nonlinear systems..Systems Control Lett. 62 (2013), 12, 1143-1150. 10.1016/j.sysconle.2013.09.007
Reference: [36] Zhang, Q.: Adaptive observer for multiple-input-multiple-output (mimo) linear time-varying systems..IEEE Trans. Automat. Control 47 (2002), 3, 525-529. 10.1109/9.989154
Reference: [37] Zemouche, A., Boutayeb, M., Maatoug, T., Kamoun, M.: On LMI conditions to design observers for Lipschitz nonlinear systems..Automatica 49 (2013), 585-591. MR 3004728, 10.1016/j.automatica.2012.11.029
.

Files

Files Size Format View
Kybernetika_54-2018-1_10.pdf 564.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo