Title:
|
Some versions of second countability of metric spaces in ZF and their role to compactness (English) |
Author:
|
Keremedis, Kyriakos |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2018 |
Pages:
|
119-134 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the realm of metric spaces we show in ZF that: (i) A metric space is compact if and only if it is countably compact and for every $\varepsilon > 0$, every cover by open balls of radius $\varepsilon $ has a countable subcover. (ii) Every second countable metric space has a countable base consisting of open balls if and only if the axiom of countable choice restricted to subsets of $\mathbb{R}$ holds true. (iii) A countably compact metric space is separable if and only if it is second countable. (English) |
Keyword:
|
axiom of choice |
Keyword:
|
compact space |
Keyword:
|
countably compact space |
Keyword:
|
totally bounded space |
Keyword:
|
Lindelöf space |
Keyword:
|
separable space |
Keyword:
|
second countable metric space |
MSC:
|
54E35 |
MSC:
|
54E45 |
idZBL:
|
Zbl 06890400 |
idMR:
|
MR3783812 |
DOI:
|
10.14712/1213-7243.2015.229 |
. |
Date available:
|
2018-04-17T13:52:10Z |
Last updated:
|
2020-04-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147182 |
. |
Reference:
|
[1] Bentley H. L., Herrlich H.: Countable choice and pseudometric spaces.Topology Appl. 85 (1998), 153–164. Zbl 0922.03068, 10.1016/S0166-8641(97)00138-7 |
Reference:
|
[2] Brunner N.: Lindelöf Räume und Auswahlaxiom.Anz. Österr. Akad. Wiss. Math.-Nat. 119 (1982), 161–165. |
Reference:
|
[3] Good C., Tree I. J., Watson S.: On Stone's theorem and the axiom of choice.Proc. Amer. Math. Soc. 126 (1998), 1211–1218. 10.1090/S0002-9939-98-04163-X |
Reference:
|
[4] Herrlich H.: Axiom of Choice.Lecture Notes in Mathematics, 1876, Springer, Berlin, 2006. Zbl 1102.03049 |
Reference:
|
[5] Herrlich H.: Products of Lindelöf $T_{2}$-spaces are Lindelöf---in some models of $ {\rm {ZF}}$.Comment. Math. Univ. Carolin. 43, (2002), no. 2, 319–333. |
Reference:
|
[6] Herrlich H., Strecker G. E.: When is $\mathbb N$ Lindelöf?.Comment. Math. Univ. Carolin. 38 (1997), no. 3, 553–556. |
Reference:
|
[7] Howard P., Keremedis K., Rubin J. E., Stanley A.: Paracompactness of metric spaces and the axiom of multiple choice.Math. Log. Q. 46 (2000), no. 2, 219–232. 10.1002/(SICI)1521-3870(200005)46:2<219::AID-MALQ219>3.0.CO;2-2 |
Reference:
|
[8] Howard P., Rubin J. E.: Consequences of the Axiom of Choice.Math. Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl 0947.03001, 10.1090/surv/059 |
Reference:
|
[9] Keremedis K.: On the relative strength of forms of compactness of metric spaces and their countable productivity in $\mathbf {ZF}$.Topology Appl. 159 (2012), 3396–3403. 10.1016/j.topol.2012.08.003 |
Reference:
|
[10] Keremedis K.: On metric spaces where continuous real valued functions are uniformly continuous in $\mathbf {ZF}$.Topology Appl. 210 (2016), 366–375. 10.1016/j.topol.2016.07.021 |
Reference:
|
[11] Keremedis K.: Some notions of separability of metric spaces in $\mathbf {ZF}$ and their relation to compactness.Bull. Polish Acad. Sci. Math. 64 (2016), 109–136. 10.4064/ba8087-12-2016 |
Reference:
|
[12] Keremedis K., Tachtsis E.: Compact metric spaces and weak forms of the axiom of choice.MLQ Math. Log. Q. 47 (2001), 117–128. 10.1002/1521-3870(200101)47:1<117::AID-MALQ117>3.0.CO;2-N |
Reference:
|
[13] Munkres J. R.: Topology.Prentice-Hall, New Jersey, 1975. Zbl 0951.54001 |
Reference:
|
[14] Tachtsis E.: Disasters in metric topology without choice.Comment. Math. Univ. Carolin. 43 (2002), no. 1, 165–174. |
. |